
Engineering Sciences 31/Computer Science 56

Final Project

Liane Makatura and Stylianos Tegas

August 31, 2015

Abstract

The advent of digital electronics has ushered in an era of rapid innovation and discovery. These elec-

tronics have infiltrated nearly every aspect of our daily lives, holding significant influence over activities

from education to personal communication. We decided to explore the influence of digital electronics in

the entertainment industry, pursuing the creation of a polyphonic keyboard. The notes of this keyboard

span one full octave, from C4 (middle C) to C5, including all sharps and flats. It also implements a sustain

pedal, which allows the user to suspend notes even after the corresponding key has been released.

1

Contents

Contents 2

1 Introduction 3

2 Design Solution 3

2.1 Specifications . 3

2.2 Operating Instructions . 4

2.3 Theory of Operation . 5

2.4 Construction and Debugging . 8

3 Justification and Evaluation 9

4 Conclusions 10

5 Acknowledgements 11

6 References 11

7 Appendices 12

7.1 System Level Diagrams . 12

7.2 Programmed Logic . 14

7.3 Memory Map . 44

7.4 Waveform Graphs . 45

7.5 Data Sheets . 46

7.6 Computer Programs . 46

2

1 Introduction

While digital electronics have a wide range of usefulness in various applications, generating sound

is rather difficult without a specific hardware setup in place. Further complicating things, generating

more than one note at a time (polyphony) is practically impossible without multiple FPGA systems.

Thus, the problem to solve is twofold: how can one generate sound, and how can one generate

superpositions of sounds?

2 Design Solution

2.1 Specifications

Inputs:

1. Note Buttons (C4− C5)

2. Sustain Switch

The circuit receives a series of button presses based on the above possible inputs, as well

as a possible switch signal. Based on the buttons pressed, the circuit creates addresses for a

wave generator lookup table that increment in certain step sizes. These addresses are used to

find the corresponding value of the wave for each note. These values are added together on

the other side of the lookup table and then normalized. This final value is then sent through

a digital to analog converter before being played on a speaker. If the sustain switch is closed,

then even after a button is released, the circuit continues to play that note.

3

2.2 Operating Instructions

Assembly:

Materials:

1. FPGA (Nexys 3) with its microUSB cable

2. Computer (must have Xilinx and Adept software)

3. Required VHDL files

4. Pmod DA2 - Digital to Analog Converter

5. Pmod AMP2 - Sound Amplifier

6. Pmod BTN - Four Push Buttons (x4)

7. Pmod Cable Kit, 6 pin (x5)

Assembly of the keyboard is fairly straightforward. First, gather the above materials. As-

semble the cable kits and place one in each of the top halves of the 12 pin connectors on the

FPGA (JA, JB, JC, JD). Take the final cable kit and place it in the bottom half of the JD 12 pin

connector. Attach the four Pmod BTNs to the cable kits placed in the top halves of the 12

pin connectors. Attach the Pmod DA2 to the cable kit in the bottom half of the JD 12 pin

connector, then attach the Pmod AMP2 to the output of the Pmod DA2. The Pmod AMP2 is

modified such that its 4th pin (the shutdown pin) is tied to Vcc, so that it is always ready to

receive data.

Connect the FPGA board to the computer. Assemble the required files in the ISE Design Kit

software, then generate a programming file. Finally, open the Adept software, and program

the FPGA. Congratulations, you have a functional polyphonic keyboard!

Usage

To use our keyboard, just push any combinations of the buttons on the Pmod BTNs! The

top left button on the Pmod connected to the JC 12 pin connector does not connect to an input

into the circuit, a feature shared by the top buttons on the Pmod connected to the JA 12 pin

connector. To sustain notes, simply flip the switch located at T10 on the FPGA.

4

2.3 Theory of Operation

Each section in the block diagram of the circuit is explained in more detail below. The

operation of the circuit is as follows:

Slow Clock

This is a clock divider that runs the majority of the circuit. It is a clock that runs six times

slower than the master clock (100MHz). This slow clock is required for the circuit because of

the inherent latency in the wave generator lookup table. Since it takes 6 clock cycles for the

lookup table to generate an ouput after it has received an input, the rest of the circuit must

run 6 times slower than the lookup table to compensate and not generate unwanted outputs.

The slow clock takes in the master clock as input. It counts to three, and when it reaches

three, it flips the value of its internal signal. The internal signal is outputted constantly. Thus,

the block acts as a clock running at (100 / 6) = 16.67MHz.

Sampler Counter

This is a counter that creates the note sampling rate of 44.1kHz, used almost ubiquitously in

audio digital recording. This counter is required for the circuit because it reduces the number

of samples taken, which in turn allows us to create sounds that humans will be able to hear.

This is because of the way that direct digital synthesis evaluates and creates tones (i.e. the

output frequency is directly proportional to the sampling frequency).

The sampler counter takes the slow clock as input. It counts to 378 before outputting an

enable signal. This enable signal is eventually fed into both the note address lookup/update

array and the select counter.

Note Address

This is a set of two arrays, used to index the correct sine value to generate its corresponding

note. This set of arrays is required for the circuit in order to generate the correct tones from

the wave generator lookup table.

The arrays receive input from the select counter. When the enable is asserted, each of the

addresses in the first array is updated by its corresponding step value in the second array.

These updated addresses are fed constantly into the multiplexer.

5

Select Counter

This is a counter that chooses which of the thirteen note addresses to send through the

multiplexer to the wave generator lookup table. This is required for the circuit in order to

actually choose which note to send through. Since the counter will cycle through all thirteen

notes, it will allow for any and all of the notes to be played at once.

The counter receives an enable input from the sampler counter. When it does, it begins

counting from zero to twelve, allowing the multiplexer to send in each updated note address

to the lookup table. The counter then resets and waits for the next enable from the sample

counter.

Note Multiplexer

This multiplexer chooses which note to send into the wave generator lookup table. This is

required for the circuit in order to be able to generate multiple tones at once.

The multiplexer receives inputs to be multiplexed from the note address arrays. It also

receives input from the select counter in the form of select bits. These bits tell the multiplexer

which note address to allow past into the wave generator lookup table.

Wave Generator Lookup Table

This block generates a sine value based on the input it receives. This is required for the

circuit in order to actually generate a sine wave which will be translated into sound.

This block was constructed by the core generator software in Xilinx, so we are not entirely

sure of the mechanisms it uses. In general, though, the generator receives an address. It then

indexes into a lookup table, finds the appropriate sine value, and outputs it.

Button Pressed Multiplexer

This multiplexer chooses whether to add the sine value to the accumulator based on whether

the button for that note is being pressed. This is required for the circuit in order for the circuit

to not always play all thirteen notes at once.

The multiplexer receives a single select bit from the keyboard input. If the button is

pressed, it lets the sine value go through. Otherwise, it sends zero to the accumulator.

6

Accumulator

This block adds the sine values from the wave generator together. This is required for the

circuit in order to play multiple notes at once. This idea is based on the theory of superposi-

tion (i.e. waves add directly to create superpositions of waves that act differently from either

wave).

The accumulator receives input from the button pressed multiplexer. It adds this value to

its stored value and saves it in a register when it receives a load input. When the terminal

count is reached (all thirteen notes have cycled through), the accumulator is cleared to make

room for the updated values.

Normalizer

This block normalizes the output of the accumulator. This is required for the circuit in

order to play notes at a consistent volume no matter how many are pressed.

This block receives input from the accumulator and a load signal. Based on the number of

buttons pressed (given by another input), the normalizer multiplies the accumulator input

by a certain number, then outputs the first 12 bits of that number (equivalent to shifting the

bits, or dividing by a power of two). This output is saved to a register and sent to the digital

to analog converter.

Digital to Analog Converter

This block converts the digital signal to an analog signal that is fed into the output speaker

to create the tones. This is required for the circuit in order to actually produce melodious

tones.

This block was created by David Picard, so we are not entirely sure how the block func-

tions. In general, however, it converts the full digital signal into a series of serial bits that are

sent to the amplifier to produce the tones.

7

2.4 Construction and Debugging

We initially constructed note counters for each individual note. They were fed by a slow

clock buffer than ran at 44.1kHz, and the note counters stepped by the necessary amount to

generate the proper frequencies. We then created the multiplexer that would choose which

note to feed into the wave generator lookup table and the select counter that would decide

which note to multiplex in. Following this, we used the core generator to create the wave

generator lookup table. We lastly implemented the ADDA converter that David Picard sup-

plied to us and constructed a controller for the state machine. This design ultimately failed.

We attempted to debug the system, but the system failed to output even a single note.

After some careful thought and discussion with Mitchell Goff, we changed our approach

to the problem. We did away with the individual counters and instead used arrays to hold

the addresses to the wave generator lookup table. Using a sampler counter, we updated the

addresses of each note by the step specified in another array. We also moved the multiplexer

system to the top module to simplify the design. This design approach worked, but we had

an issue where the FPGA would only sound the high c. After some careful debugging and

simulating, we realized that the latency in the wave generator lookup table was causing the

circuit to exhibit undefined behavior. To remedy this, we created a slow clock to run all of

the parts of the circuit except for the lookup table. By doing this, we effectively removed the

latency from the table. We were then finally able to sound the correct notes, although we

were not yet achieving polyphony.

The final step was adding in the accumulator and normalizer. The accumulator was con-

structed and worked without a hitch. However, when the normalizer was implemented, it

would only work when the high c note was played. This problem was solved once we real-

ized that we needed an extra state in our controller to allow the normalizer time to properly

work. After adding an extra state to the controller, the circuit worked perfectly.

After achieving polyphony, we discussed extra features regarding the keyboard. Adding

the suspension was a painless process with no debugging necessary. However, when we

attempted to implement chord creation, there was simply not enough time to make it work

properly, and so was scrapped.

8

3 Justification and Evaluation

Our initial solution to the polyphonic keyboard was ultimately scrapped in favor of a more so-

phisticated and simplistic design. While our initial solution may have worked had we figured out

the bug in our code, the solution we ultimately adopted was far easier to understand, far easier to

implement, and had the potential for far fewer bugs.

Our final design was straightforward and clear, even to those who did not work on our project. Its

data flow is relatively simple given the complexity of the problem, and the combinational logic that it

implements is abstracted in a way that generalizes it and allows the components to be used in other

(possibly unrelated) projects. Other designs that we initially looked at (including our initial design)

are clunky in terms of implementation, and rely far too much on data abstraction. While abstracting

logic is good sometimes, it can also be deadly to a program/project if not correctly done. In the case

of our final design, we took advantage of the fact that VHDL has the ability to synthesize arrays in

hardware. This could be a flaw in our final design, as arrays may not always be present in hardware

description languages, and so our project would not be portable. Ultimately, however, we believe

that our design is the best possible for the problem we set out to solve.

If we were to have the opportunity to recreate the project, we would have gone over in more detail

the goals of the project. Initially, while we understood what general ideas we needed to implement

for this project to work, we did not discuss the various options for implementing these ideas. Had

we done this, we believe that we would have realized the suitability of arrays for our design. In

addition, we would have tried to abstract out our multiplexer. Although we had initially had it in

a separate VHDL file, we chose to put it in the top module because we believed it to be a source of

our bugs, and we chose not to move it back to its own file once we figured out where the actual bugs

were originating. In this sense, the multiplexer would have also been abstracted and easily portable

to other projects.

9

4 Conclusions

The goal of this project was to create a fully functional polyphonic keyboard. In other words, we

set out to create an electronic that would be able to output multiple tones at once.

Originally, our proposal entailed multiple counters that would count independently of one another

and update the notes. However, after our initial meeting with Professor Eric Hansen and David

Picard, we realized that this design would not work with direct digital synthesis. After a fair number

of iterations of our design, our final design was able to accomplish exactly what we specified in our

proposal. In addition, we were able to add an extra feature that was not initially specified in our

proposal.

For groups in the future who consider creating a polyphonic keyboard, our suggestion regarding

its construction is to seriously think about the design before beginning to implement it. Ultimately,

we scrapped about five of six hours worth of coding because we did not take an hour to sit down

with the design and question its implementation. In addition, we would also caution future groups

against trying to optimize sound quality at first. Although it would not be too difficult to optimize

sound quality at the end of the project, we spent too much time attempting to get the best quality

sound for our keyboard when we should have instead focused on simply getting the keyboard to

sound at all.

All in all, our experience creating this keyboard was an overwhelmingly positive one. The stu-

dents, TAs and professors who helped us on our design reaffirmed our faith in collaborative think-

ing. In addition, we learned much not only about digital electronics, but about our work habits as a

team. We are very proud of our work and grateful to all those who made it possible.

10

5 Acknowledgements

We are grateful to Professor Eric Hansen, David Picard, and our TAs Hunter Black, Matthew West,

Ellen Davenport, and Mac Keyser for their assistance during the term and for this project in particu-

lar. We would also like to thank our peers for their assistance in various parts of the conceptualization

and debugging or our project. In particular, we would like to thank Dana Wieland and Mitchell Goff.

6 References

The note frequencies we generated were found on the Physics of Music - Notes page of Michigan

Tech Department of Physics website.

URL: http://www.phy.mtu.edu/ suits/notefreqs.html

11

7 Appendices

7.1 System Level Diagrams

1. Front Panel

Figure 1: This figure shows all relevant functional components of our polyphonic keyboard.

2. Functional Block Diagram

12

Figure 2: This figure shows the overall functional hardware block diagram. All elements were provided
pmods, with the exception of the ”Logic” box that is explored in the next figure.

Figure 3: This figure shows the block diagram for the data path of our polyphonic keyboard.

3. Schematic Diagram Since we did not wire any off board components, there are no schematic diagrams

13

to be shown.

4. Package Map

Figure 4: This figure shows the port mappings for our polyphonic keyboard.

5. Parts List

Reference Quantity Part Number Description
Nexys3 1 Nexys3 Digilent Nexys3 board
ADC1 1 410-113 Digilent Pmod-DA2 D/A converter
AMP 1 410-233P-KIT Digilent Pmod-AMP2 audio amplifier

BTN1-BTN4 4 410-077P Digilent Pmod-BTN 4-button module
SPKR 1 Speaker

Table 1: Parts needed to create our keyboard.

7.2 Programmed Logic

14

1. State Diagrams

Figure 5: This figure shows the state machine used by our Keyboard Controller module to control the
datapath for the polyphonic keyboard.

15

2. VHDL Code
Keyboard Top Module:

1 --
--

-- Company: ENGS 31 15X
3 -- Engineer: Liane Makatura and Stylianos Tegas
--

5 -- Create Date: 20:33:50 08/19/2015
-- Design Name:

7 -- Module Name: KeyboardTop - Behavioral
-- Project Name:

9 -- Target Devices:
-- Tool versions:

11 -- Description:
--

13 -- Dependencies:
--

15 -- Revision:
-- Revision 0.01 - File Created

17 -- Additional Comments:
--

19 --
library IEEE;

21 use IEEE.STD_LOGIC_1164.ALL;

23 -- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values

25 use IEEE.NUMERIC_STD.ALL;

27 -- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

29 --library UNISIM;
--use UNISIM.VComponents.all;

31

entity KeyboardTop is
33 Port (clk : in STD_LOGIC;

noteb : in STD_LOGIC_VECTOR (12 downto 0);
35 sus : in STD_LOGIC;

sync : out STD_LOGIC;
37 sclk : out STD_LOGIC;

DinA : out STD_LOGIC);
39 end KeyboardTop;

41 architecture Behavioral of KeyboardTop is
type wave_counter_dt is array (12 downto 0) of unsigned (15 downto 0);

43

--constants
45 constant note_steps : wave_counter_dt := (to_unsigned(389, 16), -- c

to_unsigned(412, 16), -- dflat
47 to_unsigned(436, 16), -- d

to_unsigned(462, 16), -- eflat
49 to_unsigned(490, 16), -- e

to_unsigned(519, 16), -- f
51 to_unsigned(550, 16), -- gflat

to_unsigned(583, 16), -- g
53 to_unsigned(617, 16), -- aflat

to_unsigned(654, 16), -- a
55 to_unsigned(693, 16), -- bflat

to_unsigned(734, 16), -- b
57 to_unsigned(778, 16) -- c

);
59

--signals
61

16

signal inotes: std_logic_vector(12 downto 0) := noteb;
63 signal clk_div: std_logic := ’0’; --clock divider

signal select_en: std_logic := ’0’; --enables checking of buttons
65 signal note_pressed: std_logic := ’0’; --checks whether button is pressed

67 signal selectbits: std_logic_vector (3 downto 0) := (others => ’0’); --holds select bits
for the multiplexer

signal accum_load: std_logic := ’0’; --allows accumulator to load
69 signal load: std_logic := ’0’; --allows normalizer to load

71 --addresses for each of the notes, sent to the mux
signal note_addresses : wave_counter_dt := (others => (others => ’0’)); -- initialize all

addresses to 0
73

signal noteadd: std_logic_vector (15 downto 0) := (others => ’0’); --address for the
correct note to send to lut

75 signal note_to_add: std_logic_vector (11 downto 0) := (others => ’0’); --value of the
sine wave to add to accumulator

signal sum_note: std_logic_vector (15 downto 0) := (others => ’0’); --the summed values
of the sine wave for polyphony

77 signal num_notes: std_logic_vector (3 downto 0) := (others => ’0’); -- how many notes
are pressed, for normalization

signal final_note: std_logic_vector (11 downto 0) := (others => ’0’); --the normalized
note to be sent to the adda converter

79

--components
81 -- clock divider for the datapath

-- brings it down to a clock 6 times slower than the master
83 COMPONENT ClockDivider

PORT(
85 clk : IN std_logic;

clk_div : OUT std_logic
87);

END COMPONENT;
89

-- sampler counter for address updating and cycling
91 COMPONENT SamplerCounter

PORT(
93 clk : IN std_logic;

term_cnt : OUT std_logic
95);

END COMPONENT;
97

-- select counter for the mux, to loop through all notes
99 COMPONENT SelectCounter

PORT(
101 clk : IN std_logic;

en : IN std_logic;
103 selectbits : OUT std_logic_vector(3 downto 0)

);
105 END COMPONENT;

107 -- digital to analog converter
COMPONENT adda

109 PORT(
clk : IN std_logic;

111 tone : IN std_logic_vector(11 downto 0);
sync : OUT std_logic;

113 DinA : OUT std_logic;
sclk : OUT std_logic

115);
END COMPONENT;

117

-- LUT for sin values
119 COMPONENT WaveGen

17

PORT (
121 clk : IN STD_LOGIC;

phase_in : IN STD_LOGIC_VECTOR(15 downto 0);
123 sine : OUT STD_LOGIC_VECTOR(11 DOWNTO 0)

);
125 END COMPONENT;

127 --controller for data path
COMPONENT KeyboardController

129 PORT(
clk : IN std_logic;

131 noteb : IN std_logic_vector (12 downto 0);
termcnt : IN std_logic;

133 note_pressed : OUT std_logic;
norm_reg_load_en : OUT std_logic

135);
END COMPONENT;

137

-- accumulates the sin values for polyphony
139 COMPONENT Accumulator

PORT(
141 clk : IN std_logic;

note_to_add : IN std_logic_vector(11 downto 0);
143 load_en : IN std_logic;

clear_en : IN std_logic;
145 note_to_norm : OUT std_logic_vector(15 downto 0)

);
147 END COMPONENT;

149 -- normalizes the accumulated value by the number of notes played to get the final output
-- same volume no matter how many notes are being played

151 COMPONENT Normalizer
PORT(

153 clk : IN std_logic;
load_en : IN std_logic;

155 note_to_norm : IN std_logic_vector(15 downto 0);
num_note : IN std_logic_vector(3 downto 0);

157 final_note : OUT std_logic_vector(11 downto 0)
);

159 END COMPONENT;

161

begin
163

--processes
165

--creates suspension
167 suspension: process(clk_div)

begin
169

if rising_edge(clk_div) then
171 inotes <= inotes;

if sus = ’1’ then
173 for n in 0 to 12 loop

if noteb(n) = ’1’ then
175 inotes(n) <= ’1’;

else
177 inotes(n) <= inotes(n);

end if;
179 end loop;

else
181 inotes <= noteb;

end if;
183 end if;

18

185 end process;

187 -- updates all the note addresses
address_update: process(clk_div)

189 begin

191 if rising_edge(clk_div) then
if select_en = ’1’ then

193 for n in 0 to 12 loop
note_addresses(n) <= note_addresses(n) + note_steps(n);

195 end loop;
end if;

197 end if;

199 end process;

201 -- determines which address to retreive from the sine LUT
address_mux: process(selectbits, note_addresses)

203 begin

205 case selectbits is
when "0000" =>

207 noteadd <= std_logic_vector(note_addresses(12));
when "0001" =>

209 noteadd <= std_logic_vector(note_addresses(11));
when "0010" =>

211 noteadd <= std_logic_vector(note_addresses(10));
when "0011" =>

213 noteadd <= std_logic_vector(note_addresses(9));
when "0100" =>

215 noteadd <= std_logic_vector(note_addresses(8));
when "0101" =>

217 noteadd <= std_logic_vector(note_addresses(7));
when "0110" =>

219 noteadd <= std_logic_vector(note_addresses(6));
when "0111" =>

221 noteadd <= std_logic_vector(note_addresses(5));
when "1000" =>

223 noteadd <= std_logic_vector(note_addresses(4));
when "1001" =>

225 noteadd <= std_logic_vector(note_addresses(3));
when "1010" =>

227 noteadd <= std_logic_vector(note_addresses(2));
when "1011" =>

229 noteadd <= std_logic_vector(note_addresses(1));
when "1100" =>

231 noteadd <= std_logic_vector(note_addresses(0));
when others =>

233 noteadd <= "0000000000000000";
end case;

235

end process;
237

--checks if the note address should go through to accumulator and adds to number of note
pressed for normalizer

239 tonemux: process(note_pressed)
begin

241

if note_pressed = ’1’ then
243 accum_load <= ’1’;

else
245 accum_load <= ’0’;

end if;
247

end process;

19

249

-- keeps track of how many notes are being played
251 num_note_reg: process(clk_div)

begin
253

if rising_edge(clk_div) then
255 num_notes <= num_notes;

if note_pressed = ’1’ then
257 num_notes <= std_logic_vector(unsigned(num_notes) + 1);

elsif select_en <= ’1’ then
259 num_notes <= "0000";

end if;
261 end if;

263 end process;

265 --portmaps

267 -- clock divider for the wave counters
-- brings it down to a 1024Hz clock

269 Inst_ClockDivider: ClockDivider PORT MAP(
clk => clk,

271 clk_div => clk_div
);

273

-- Counter for sampling rate, outputs tc when it’s time to sample
275 Inst_SamplerCounter: SamplerCounter PORT MAP(

clk => clk_div,
277 term_cnt => select_en

);
279

-- select counter for the mux, to loop through all notes
281 Inst_SelectCounter: SelectCounter PORT MAP(

clk => clk_div,
283 en => select_en,

selectbits => selectbits
285);

287 -- LUT for sin values
Sine_LUT : WaveGen

289 PORT MAP (
clk => clk,

291 phase_in => noteadd,
sine => note_to_add

293);

295 -- digital to analog converter
Inst_adda: adda PORT MAP(

297 clk => clk,
tone => final_note,

299 sync => sync,
DinA => DinA,

301 sclk => sclk
);

303

--Controller for datapath
305 Inst_KeyboardController: KeyboardController PORT MAP(

clk => clk_div,
307 noteb => inotes,

termcnt => select_en,
309 note_pressed => note_pressed,

norm_reg_load_en => load
311);

313 -- accumulator for polyphony

20

Inst_Accumulator: Accumulator PORT MAP(
315 clk => clk_div,

note_to_add => note_to_add,
317 load_en => accum_load,

clear_en => load,
319 note_to_norm => sum_note

);
321

-- normalizes the accumulated value by the number of notes being played
323 Inst_Normalizer: Normalizer PORT MAP(

clk => clk_div,
325 load_en => load,

note_to_norm => sum_note,
327 num_note => num_notes,

final_note => final_note
329);

331

end Behavioral;
333

335

21

Keyboard Controller:

1 --
--

-- Company: ENGS 31 15X
3 -- Engineer: Stylianos Tegas and Liane Makatura

--
5 -- Create Date: 22:00:52 08/19/2015

-- Design Name:
7 -- Module Name: KeyboardController - Behavioral

-- Project Name:
9 -- Target Devices:

-- Tool versions:
11 -- Description:

--
13 -- Dependencies:

--
15 -- Revision:

-- Revision 0.01 - File Created
17 -- Additional Comments:

--
19 --

--
library IEEE;

21 use IEEE.STD_LOGIC_1164.ALL;

23 -- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values

25 use IEEE.NUMERIC_STD.ALL;

27 -- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

29 --library UNISIM;
----use UNISIM.VComponents.all;

31

entity KeyboardController is
33 Port (clk : in STD_LOGIC;

noteb : in STD_LOGIC_VECTOR (12 downto 0);
35 termcnt : in STD_LOGIC;

note_pressed : out STD_LOGIC;
37 norm_reg_load_en : out STD_LOGIC);

end KeyboardController;
39

architecture Behavioral of KeyboardController is
41 type state_type is (check_lowc, check_dflat, check_d, check_eflat, check_e,

check_f, check_gflat, check_g, check_aflat, check_a,
43 check_bflat, check_b, check_highc, update_regs, waiting, delay);

signal state, next_state : state_type := check_lowc;
45

begin
47

control: process(state, noteb, termcnt)
49 begin

51 note_pressed <= ’0’; --defaults
norm_reg_load_en <= ’0’;

53 next_state <= state;

55 case state is
when check_lowc =>

57 if noteb(12) = ’1’ then -- if low C is pressed, let the mux know
note_pressed <= ’1’;

59 end if;
next_state <= check_dflat;

61 when check_dflat =>

22

if noteb(11) = ’1’ then -- if Db is pressed, let the mux know
63 note_pressed <= ’1’;

end if;
65 next_state <= check_d;

when check_d =>
67 if noteb(10) = ’1’ then -- if D is pressed, let the mux know

note_pressed <= ’1’;
69 end if;

next_state <= check_eflat;
71 when check_eflat =>

if noteb(9) = ’1’ then -- if Eb is pressed, let the mux know
73 note_pressed <= ’1’;

end if;
75 next_state <= check_e;

when check_e =>
77 if noteb(8) = ’1’ then -- if E is pressed, let the mux know

note_pressed <= ’1’;
79 end if;

next_state <= check_f;
81 when check_f =>

if noteb(7) = ’1’ then -- if F is pressed, let the mux know
83 note_pressed <= ’1’;

end if;
85 next_state <= check_gflat;

when check_gflat =>
87 if noteb(6) = ’1’ then -- if Gb is pressed, let the mux know

note_pressed <= ’1’;
89 end if;

next_state <= check_g;
91 when check_g =>

if noteb(5) = ’1’ then -- if G is pressed, let the mux know
93 note_pressed <= ’1’;

end if;
95 next_state <= check_aflat;

when check_aflat =>
97 if noteb(4) = ’1’ then -- if Ab is pressed, let the mux know

note_pressed <= ’1’;
99 end if;

next_state <= check_a;
101 when check_a =>

if noteb(3) = ’1’ then -- if A is pressed, let the mux know
103 note_pressed <= ’1’;

end if;
105 next_state <= check_bflat;

when check_bflat =>
107 if noteb(2) = ’1’ then -- if Bb is pressed, let the mux know

note_pressed <= ’1’;
109 end if;

next_state <= check_b;
111 when check_b =>

if noteb(1) = ’1’ then -- if B is pressed, let the mux know
113 note_pressed <= ’1’;

end if;
115 next_state <= check_highc;

when check_highc =>
117 if noteb(0) = ’1’ then -- if high C is pressed, let the mux know

note_pressed <= ’1’;
119 end if;

next_state <= delay;
121 when update_regs =>

norm_reg_load_en <= ’1’; -- load in the normalized value to the
second register

123 next_state <= waiting; -- start checking again
when waiting =>

125 if termcnt = ’1’ then -- delay until next sampling time

23

next_state <= check_lowc;
127 end if;

when delay => -- gives time for normalization on high c
129 next_state <= update_regs;

end case;
131

end process;
133

135 update_state: process(clk)
begin

137 if rising_edge(clk) then
state <= next_state;

139 end if;
end process;

141

end Behavioral;
143

145

24

Clock Divider:

--
--

2 -- Company: ENGS 31 15X
-- Engineer: Stylianos Tegas and Liane Makatura

4 --
-- Create Date: 20:14:08 08/19/2015

6 -- Design Name:
-- Module Name: ClockDivider - Behavioral

8 -- Project Name:
-- Target Devices:

10 -- Tool versions:
-- Description:

12 --
-- Dependencies:

14 --
-- Revision:

16 -- Revision 0.01 - File Created
-- Additional Comments:

18 --
--

--
20 library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
22

-- Uncomment the following library declaration if using
24 -- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC_STD.ALL;
26

-- Uncomment the following library declaration if instantiating
28 -- any Xilinx primitives in this code.

--library UNISIM;
30 --use UNISIM.VComponents.all;

32 entity ClockDivider is
Port (clk : in STD_LOGIC;

34 clk_div : out STD_LOGIC);
end ClockDivider;

36

architecture Behavioral of ClockDivider is
38 constant clk_div_value: integer := 3;

signal count: unsigned (1 downto 0) := (others => ’0’);
40 signal tog: std_logic := ’0’;

begin
42

divider: process(clk)
44 begin

46 if rising_edge(clk) then
if count = (clk_div_value - 1) then

48 tog <= NOT(tog); -- toggle the clock value
count <= (others => ’0’);

50 else
count <= count + 1;

52 end if;
end if;

54

end process;
56

clk_div <= tog; -- assign the output
58

end Behavioral;
60

25

Select Counter:

1 --
--

-- Company: ENGS 31 15X
3 -- Engineer: Stylianos Tegas and Liane Makatura

--
5 -- Create Date: 20:09:36 08/19/2015

-- Design Name:
7 -- Module Name: SelectCounter - Behavioral

-- Project Name:
9 -- Target Devices:

-- Tool versions:
11 -- Description:

--
13 -- Dependencies:

--
15 -- Revision:

-- Revision 0.01 - File Created
17 -- Additional Comments:

--
19 --

--
library IEEE;

21 use IEEE.STD_LOGIC_1164.ALL;

23 -- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values

25 use IEEE.NUMERIC_STD.ALL;

27 -- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

29 --library UNISIM;
--use UNISIM.VComponents.all;

31

entity SelectCounter is
33 Port (clk : in STD_LOGIC;

en : in STD_LOGIC;
35 selectbits : out STD_LOGIC_VECTOR (3 downto 0));

end SelectCounter;
37

architecture Behavioral of SelectCounter is
39 signal iQ: unsigned (3 downto 0) := "1100";

begin
41

count: process(clk)
43 begin

45 if rising_edge(clk) then

47 if en = ’1’ AND iQ = "1100" then --if enable is high and iQ has
reached terminal count, reset

iQ <= "0000";
49 elsif iQ >= "0000" AND iQ < "1100" then --if iQ in process of counting,

continue
iQ <= iQ + 1;

51 else --if done counting but enable is not high,
feed 12

iQ <= "1100";
53 end if;

26

55 end if;

57 end process;

59 selectbits <= std_logic_vector(iQ); --assign select bits

61 end Behavioral;

63

27

Accumulator:

1 --
--

-- Company: ENGS 31 15X
3 -- Engineer: Stylianos Tegas and Liane Makatura

--
5 -- Create Date: 13:57:27 08/22/2015

-- Design Name:
7 -- Module Name: Accumulator - Behavioral

-- Project Name:
9 -- Target Devices:

-- Tool versions:
11 -- Description:

--
13 -- Dependencies:

--
15 -- Revision:

-- Revision 0.01 - File Created
17 -- Additional Comments:

--
19 --

--
library IEEE;

21 use IEEE.STD_LOGIC_1164.ALL;

23 -- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values

25 use IEEE.NUMERIC_STD.ALL;

27 -- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

29 --library UNISIM;
--use UNISIM.VComponents.all;

31

entity Accumulator is
33 Port (clk : in STD_LOGIC;

note_to_add : in STD_LOGIC_VECTOR (11 downto 0);
35 load_en : in STD_LOGIC;

clear_en : in STD_LOGIC;
37 note_to_norm : out STD_LOGIC_VECTOR (15 downto 0));

end Accumulator;
39

architecture Behavioral of Accumulator is
41 signal summed_note: std_logic_vector (15 downto 0) := (others => ’0’);

43 begin

45 accumulate: process(clk)
begin

47

if rising_edge(clk) then
49 summed_note <= summed_note; -- accumulate the sin waves

if clear_en = ’1’ then -- if clear then clear register
51 summed_note <= (others => ’0’);

elsif load_en = ’1’ then -- if load load new signal
53 summed_note <= std_logic_vector(unsigned(summed_note) + unsigned(

note_to_add));
end if;

55 end if;

57 end process;

59 note_to_norm <= summed_note;

28

61 end Behavioral;

29

Normalizer:

1 --
--

-- Company: ENGS 31 15X
3 -- Engineer: Stylianos Tegas and Liane Makatura

--
5 -- Create Date: 14:36:20 08/22/2015

-- Design Name:
7 -- Module Name: Normalizer - Behavioral

-- Project Name:
9 -- Target Devices:

-- Tool versions:
11 -- Description:

--
13 -- Dependencies:

--
15 -- Revision:

-- Revision 0.01 - File Created
17 -- Additional Comments:

--
19 --

--
library IEEE;

21 use IEEE.STD_LOGIC_1164.ALL;

23 -- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values

25 use IEEE.NUMERIC_STD.ALL;

27 -- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.

29 --library UNISIM;
--use UNISIM.VComponents.all;

31

entity Normalizer is
33 Port (clk : in STD_LOGIC;

load_en : in STD_LOGIC;
35 note_to_norm : in STD_LOGIC_VECTOR (15 downto 0);

num_note : in STD_LOGIC_VECTOR (3 downto 0);
37 final_note : out STD_LOGIC_VECTOR (11 downto 0));

end Normalizer;
39

architecture Behavioral of Normalizer is
41 type array_dt is array (12 downto 0) of unsigned (11 downto 0);

constant mult_factors : array_dt := (to_unsigned(4095, 12), -- 1 note
43 to_unsigned(2896, 12), -- 2 notes

to_unsigned(2365, 12), -- 3 notes
45 to_unsigned(2048, 12), -- 4 notes

to_unsigned(1832, 12), -- 5 notes
47 to_unsigned(1672, 12), -- 6 notes

to_unsigned(1548, 12), -- 7 notes
49 to_unsigned(1448, 12), -- 8 notes

to_unsigned(1365, 12), -- 9 notes
51 to_unsigned(1295, 12), -- 10 notes

to_unsigned(1235, 12), -- 11 notes
53 to_unsigned(1182, 12), -- 12 notes

to_unsigned(1136, 12) -- 13 notes
55);

signal multi_note: std_logic_vector (27 downto 0) := (others => ’0’);
57 signal iQ: std_logic_vector (11 downto 0) := (others => ’0’);

59 begin

61 normalize: process(note_to_norm, num_note)

30

begin
63

if num_note = "0000" then -- prevents indexing out of bounds
65 multi_note <= std_logic_vector(unsigned(note_to_norm) * mult_factors(

to_integer(unsigned(num_note))));
else

67 multi_note <= std_logic_vector(unsigned(note_to_norm) * mult_factors(
to_integer(unsigned(num_note)-1)));

end if;
69

end process;
71

load: process(clk)
73 begin

75 if rising_edge(clk) then
if load_en = ’1’ then

77 iQ <= multi_note(27 downto 16); --take first 12 bits
else

79 iQ <= iQ;
end if;

81 end if;

83 end process;

85 final_note <= iQ;

87 end Behavioral;

89

31

Adda Converter:

1 --
--

-- Company: Dartmouth College
3 -- Engineer: David Picard

-- Modified by Stylianos Tegas and Liane Makatura
5 -- Final Project: ENGS 31 15X

--
7 -- Create Date: 04/29/2015 02:32:19 PM

-- Design Name:
9 -- Module Name: adda - Behavioral

-- Project Name:
11 -- Target Devices:

-- Tool Versions:
13 -- Description:

--
15 -- Dependencies:

--
17 -- Revision:

-- Revision 0.01 - File Created
19 -- Additional Comments:

--
21 --

--

23

library IEEE;
25 use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.ALL; -- needed for arithmetic
27

library UNISIM; -- needed for the BUFG component
29 use UNISIM.Vcomponents.ALL;

31

entity adda is
33 Port (

clk : in STD_LOGIC;
35 tone : in STD_LOGIC_VECTOR (11 downto 0);

sync : out std_logic;
37 DinA : out std_logic;

sclk : out std_logic
39);

end adda;
41

architecture Behavioral of adda is
43

45

signal lastsampleclk : STD_LOGIC;
47 signal sampleclk : STD_LOGIC := ’0’;

49 signal den_in : STD_LOGIC;
signal dwe_in : std_logic;

51 signal di_in : STD_LOGIC_VECTOR(15 downto 0);
signal daddr_in : std_LOGIC_vector(6 downto 0);

53 signal sampledvalue : STD_LOGIC_VECTOR(15 downto 0) := x"1234";
signal sampledvalue2 : STD_LOGIC_VECTOR(15 downto 0) := x"5555";

55 signal DATA1 : STD_LOGIC_VECTOR(15 downto 0) := x"2345";
signal DATA2 : STD_LOGIC_VECTOR(15 downto 0) := x"3456";

57 signal busy, DONE, nSYNC, START : STD_LOGIC;
constant control : std_logic_vector(3 downto 0) := "0000";

59

type states is (Idle, ShiftOut, SyncData);
61 signal current_state : states;

32

signal next_state : states;
63

signal temp1 : std_logic_vector(15 downto 0);
65 signal clk_div : std_logic;

signal clk_counter : unsigned(27 downto 0):= x"0000000";
67 signal shiftCounter : unsigned(4 downto 0);

signal enShiftCounter: std_logic;
69 signal enParalelLoad : std_logic;

signal clk_counter2 : integer := 0;
71 signal clk_en : std_logic := ’0’;

signal data_counter : unsigned (4 downto 0) := "00000";
73 signal data_counter2 : unsigned (11 downto 0) := x"000";

75 begin

77 sclk <= clk_en;

79

Slow_clock_buffer: BUFG
81 port map (I => clk_en,

O => sampleclk);
83 --

--

85 clock_divide2 : process(clk)
begin

87 if (clk = ’1’ and clk’event) then
if clk_counter2 = 5 then clk_en <= not clk_en;

89 clk_counter2 <= 0;
else clk_counter2 <= clk_counter2 + 1;

91 end if;
end if;

93 end process;
--

--
95 count_bits : process (sampleclk)

begin
97 if (sampleclk’event) and (sampleclk = ’1’) then

start <= ’0’;
99 if data_counter = "11001" then data_counter <= (others => ’0’);

start <= ’1’;
101 else data_counter <= data_counter + 1;

end if;
103

end if; --clk
105 end process;

107

109 --

111 counter : process(sampleclk)
begin

113 if (sampleclk = ’1’ and sampleclk’event) then
DinA <= temp1(15);

115 if start = ’1’ then
temp1 <= "0000" & not(tone(11)) & tone(10 downto 0);

117 end if;
if enParalelLoad = ’1’ then

119 shiftCounter <= "00000";

121 elsif (enShiftCounter = ’1’) then
temp1 <= temp1(14 downto 0)&temp1(15);

123 shiftCounter <= shiftCounter + 1;

33

125 end if;
end if;

127 end process;

129 --

SYNC_PROC: process (sampleclk)
131 begin

if (sampleclk’event and sampleclk = ’1’) then
133 current_state <= next_state;

sync <= nsync;
135 end if;

end process;
137

139 --

OUTPUT_DECODE: process (current_state)
141 begin

if current_state = Idle then
143 enShiftCounter <=’0’;

nSYNC <=’1’;
145 enParalelLoad <= ’1’;

elsif current_state = ShiftOut then
147 enShiftCounter <=’1’;

nSYNC <=’0’;
149 enParalelLoad <= ’0’;

else --if current_state = SyncData then
151 enShiftCounter <=’0’;

nSYNC <=’1’;
153 enParalelLoad <= ’0’;

end if;
155 end process;

157

--

159 NEXT_STATE_DECODE: process (current_state, START, shiftCounter)
begin

161

next_state <= current_state;
163

case (current_state) is
165 when Idle =>

if START = ’1’ then
167 next_state <= ShiftOut;

end if;
169 when ShiftOut =>

if shiftCounter = "01111" then --"10000" then
171 next_state <= SyncData;

end if;
173 when SyncData =>

if START = ’0’ then
175 next_state <= Idle;

end if;
177 when others =>

next_state <= Idle;
179 end case;

end process;
181

183 end Behavioral;

185

34

35

UCF:

This file is a general .ucf for Nexys3 rev B board
2 ## To use it in a project:
- remove or comment the lines corresponding to unused pins

4 ## - rename the used signals according to the project

6 ## Clock signal
NET "clk" LOC = "V10" | IOSTANDARD = "LVCMOS33"; #Bank = 2, pin name =

IO_L30N_GCLK0_USERCCLK, Sch name = GCLK
8 Net "clk" TNM_NET = sys_clk_pin;
TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin 100000 kHz;

10 PIN "Inst_adda/Slow_clock_buffer.O" CLOCK_DEDICATED_ROUTE = FALSE;

12 ## 7 segment display
#NET "seg<0>" LOC = "T17" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =

IO_L51P_M1DQ12, Sch name = CA
14 #NET "seg<1>" LOC = "T18" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =

IO_L51N_M1DQ13, Sch name = CB
#NET "seg<2>" LOC = "U17" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =

IO_L52P_M1DQ14, Sch name = CC
16 #NET "seg<3>" LOC = "U18" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =

IO_L52N_M1DQ15, Sch name = CD
#NET "seg<4>" LOC = "M14" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name = IO_L53P

, Sch name = CE
18 #NET "seg<5>" LOC = "N14" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =

IO_L53N_VREF, Sch name = CF
#NET "seg<6>" LOC = "L14" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name = IO_L61P

, Sch name = CG
20 #NET "seg<7>" LOC = "M13" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name = IO_L61N

, Sch name = DP

22 #NET "an<0>" LOC = "N16" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =
IO_L50N_M1UDQSN, Sch name = AN0

#NET "an<1>" LOC = "N15" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =
IO_L50P_M1UDQS, Sch name = AN1

24 #NET "an<2>" LOC = "P18" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =
IO_L49N_M1DQ11, Sch name = AN2

#NET "an<3>" LOC = "P17" | IOSTANDARD = "LVCMOS33"; #Bank = 1, Pin name =
IO_L49P_M1DQ10, Sch name = AN3

26

28 ## Leds
#NET "Led<0>" LOC = "U16" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L2P_CMPCLK, Sch name = LD0
30 #NET "Led<1>" LOC = "V16" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L2N_CMPMOSI, Sch name = LD1
#NET "Led<2>" LOC = "U15" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L5P,

Sch name = LD2
32 #NET "Led<3>" LOC = "V15" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L5N,

Sch name = LD3
#NET "Led<4>" LOC = "M11" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L15P

, Sch name = LD4
34 #NET "Led<5>" LOC = "N11" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L15N

, Sch name = LD5
#NET "Led<6>" LOC = "R11" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L16P

, Sch name = LD6
36 #NET "Led<7>" LOC = "T11" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L16N_VREF, Sch name = LD7

38

Switches
40 NET "sus" LOC = "T10" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L29N_GCLK2, Sch name = SW0
#NET "dflatb" LOC = "T9" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

36

IO_L32P_GCLK29, Sch name = SW1
42 #NET "db" LOC = "V9" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L32N_GCLK28, Sch name = SW2
#NET "eflatb" LOC = "M8" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L40P, Sch name = SW3
44 #NET "maj" LOC = "N8" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L40N,

Sch name = SW4
#NET "min" LOC = "U8" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L41P,

Sch name = SW5
46 #NET "dim" LOC = "V8" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L41N_VREF, Sch name = SW6
#NET "aug" LOC = "T5" | IOSTANDARD = "LVCMOS33"; #Bank = MISC, Pin name =

IO_L48N_RDWR_B_VREF_2, Sch name = SW7
48

50 ## Buttons
#NET "aflatb" LOC = "B8" | IOSTANDARD = "LVCMOS33"; #Bank = 0, Pin name = IO_L33P

, Sch name = BTNS
52 #NET "maj" LOC = "A8" | IOSTANDARD = "LVCMOS33"; #Bank = 0, Pin name = IO_L33N,

Sch name = BTNU
#NET "dim" LOC = "C4" | IOSTANDARD = "LVCMOS33"; #Bank = 0, Pin name =

IO_L1N_VREF, Sch name = BTNL
54 #NET "min" LOC = "C9" | IOSTANDARD = "LVCMOS33"; #Bank = 0, Pin name =

IO_L34N_GCLK18, Sch name = BTND
#NET "aug" LOC = "D9" | IOSTANDARD = "LVCMOS33"; #Bank = 0, Pin name =

IO_L34P_GCLK19, Sch name = BTNR
56

58 ## 12 pin connectors

60 ##JA
#NET "JA<0>" LOC = "T12" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L19P

, Sch name = JA1
62 NET "noteb<0>" LOC = "V12" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L19N, Sch name = JA2
#NET "JA<2>" LOC = "N10" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L20P

, Sch name = JA3
64 NET "noteb<1>" LOC = "P11" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name =

IO_L20N, Sch name = JA4
#NET "JA<4>" LOC = "M10" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L22P

, Sch name = JA7
66 #NET "JA<5>" LOC = "N9" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L22N

, Sch name = JA8
#NET "JA<6>" LOC = "U11" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L23P

, Sch name = JA9
68 #NET "JA<7>" LOC = "V11" | IOSTANDARD = "LVCMOS33"; #Bank = 2, Pin name = IO_L23N

, Sch name = JA10

70 ##JB
NET "noteb<2>" LOC = "K2" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L38P_M3DQ2, Sch name = JB1
72 NET "noteb<3>" LOC = "K1" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L38N_M3DQ3, Sch name = JB2
NET "noteb<4>" LOC = "L4" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L39P_M3LDQS, Sch name = JB3
74 NET "noteb<5>" LOC = "L3" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L39N_M3LDQSN, Sch name = JB4
#NET "RsRx_p" LOC = "J3" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L40P_M3DQ6, Sch name = JB7
76 #NET "JB<5>" LOC = "J1" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L40N_M3DQ7, Sch name = JB8
#NET "JB<6>" LOC = "K3" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L42N_GCLK24_M3LDM, Sch name = JB9
78 #NET "JB<7>" LOC = "K5" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L43N_GCLK22_IRDY2_M3CASN, Sch name = JB10

37

80 ##JC
NET "noteb<6>" LOC = "H3" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L44N_GCLK20_M3A6, Sch name = JC1
82 NET "noteb<7>" LOC = "L7" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L45P_M3A3, Sch name = JC2
#NET "JC<2>" LOC = "K6" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L45N_M3ODT, Sch name = JC3
84 NET "noteb<8>" LOC = "G3" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L46P_M3CLK, Sch name = JC4
#NET "rx_done_tick_p" LOC = "G1" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name

= IO_L46N_M3CLKN, Sch name = JC7
86 #NET "JC<5>" LOC = "J7" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L47P_M3A0, Sch name = JC8
#NET "JC<6>" LOC = "J6" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L47N_M3A1, Sch name = JC9
88 #NET "JC<7>" LOC = "F2" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L48P_M3BA0, Sch name = JC10

90 ##JD, LX16 Die only
NET "noteb<9>" LOC = "G11" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L40P, Sch name = JD1
92 NET "noteb<10>" LOC = "F10" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L40N, Sch name = JD2
NET "noteb<11>" LOC = "F11" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L42P, Sch name = JD3
94 NET "noteb<12>" LOC = "E11" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name =

IO_L42N, Sch name = JD4
NET "sync" LOC = "D12" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name = IO_L47P,

Sch name = JD7
96 NET "DinA" LOC = "C12" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name = IO_L47N,

Sch name = JD8
#NET "JD<6>" LOC = "F12" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name = IO_L51P

, Sch name = JD9
98 NET "sclk" LOC = "E12" | IOSTANDARD = "LVCMOS33"; #Bank = 3, Pin name = IO_L51N,

Sch name = JD10

100

38

Keyboard Testbench:

--
2 -- Company: ENGS31 15X
-- Engineer: Stylianos Tegas and Liane Makatura

4 --
-- Create Date: 19:35:14 08/20/2015

6 -- Design Name:
-- Module Name: O:/engs31/Keyboard/KeyboardTest.vhd

8 -- Project Name: Keyboard
-- Target Device:

10 -- Tool versions:
-- Description:

12 --
-- VHDL Test Bench Created by ISE for module: KeyboardTop

14 --
-- Dependencies:

16 --
-- Revision:

18 -- Revision 0.01 - File Created
-- Additional Comments:

20 --
-- Notes:

22 -- This testbench has been automatically generated using types std_logic and
-- std_logic_vector for the ports of the unit under test. Xilinx recommends

24 -- that these types always be used for the top-level I/O of a design in order
-- to guarantee that the testbench will bind correctly to the post-implementation

26 -- simulation model.
--

28 LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

30

-- Uncomment the following library declaration if using
32 -- arithmetic functions with Signed or Unsigned values

--USE ieee.numeric_std.ALL;
34

ENTITY KeyboardTest IS
36 END KeyboardTest;

38 ARCHITECTURE behavior OF KeyboardTest IS

40 -- Component Declaration for the Unit Under Test (UUT)

42 COMPONENT KeyboardTop
PORT(

44 clk : IN std_logic;
noteb : in STD_LOGIC_VECTOR (12 downto 0);

46 sus : in std_logic;
sync : OUT std_logic;

48 sclk : OUT std_logic;
DinA : OUT std_logic

50);
END COMPONENT;

52

54 --Inputs
signal clk : std_logic := ’0’;

56 signal noteb : std_logic_vector (12 downto 0) := (others => ’0’);
signal sus : std_logic := ’0’;

58

--Outputs
60 signal sync : std_logic;

signal sclk : std_logic;
62 signal DinA : std_logic;

39

64 -- Clock period definitions
constant clk_period : time := 10 ns;

66 constant sclk_period : time := 10 ns;

68 BEGIN

70 -- Instantiate the Unit Under Test (UUT)
uut: KeyboardTop PORT MAP (

72 clk => clk,
noteb => noteb,

74 sus => sus,
sync => sync,

76 sclk => sclk,
DinA => DinA

78);

80 -- Clock process definitions
clk_process :process

82 begin
clk <= ’0’;

84 wait for clk_period/2;
clk <= ’1’;

86 wait for clk_period/2;
end process;

88

90

-- Stimulus process
92 stim_proc: process

begin
94 -- hold reset state for 100 ns.

wait for 100 ns;
96

wait for clk_period*10;
98

-- insert stimulus here
100

noteb(0) <= ’1’;
102 wait for 2E4*clk_period;

noteb(0) <= ’0’;
104 wait for 1E4*clk_period;

106 noteb(0) <= ’1’;
noteb(4) <= ’1’;

108 noteb(7) <= ’1’;
noteb(12) <= ’1’;

110 wait for 3E4*clk_period;

112

sus <= ’1’;
114 wait for 1E4*clk_period;

116

noteb(0) <= ’0’;
118 noteb(4) <= ’0’;

noteb(7) <= ’0’;
120 noteb(12) <= ’0’;

wait for 2E4*clk_period;
122

sus <= ’0’;
124

wait;
126

end process;
128

40

END;
130

41

3. Resource Utilization

According to the Design Summary, our keyboard design had the following resource usage on the
FPGA (the following is taken directly from the synthesis report):

Slice Logic Utilization: Number of Slice Registers: 348 out of 18224 1%
Number of Slice LUTs: 487 out of 9112 5%
Number used as Logic: 461 out of 9112 5%
Number used as Memory: 26 out of 2176 1%
Number used as SRL: 26

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 540
Number with an unused Flip Flop: 192 out of 540 35%
Number with an unused LUT: 53 out of 540 9%
Number of fully used LUT-FF pairs: 295 out of 540 54%
Number of unique control sets: 20

IO Utilization:
Number of IOs: 18
Number of bonded IOBs: 18 out of 232 7%
Specific Feature Utilization:
Number of Block RAM/FIFO: 11 out of 32 34%
Number using Block RAM only: 11
Number of BUFG/BUFGCTRLs: 3 out of 16 18%
Number of DSP48A1s: 2 out of 32 6%

4. Critical Timing Path
According to the Synthesis Report, the critical path in our keyboard is the delay from the controller to
the normalizer with the number of notes signal. The critical timing path is 7.431ns, of which 4.372ns is
from the logic and 3.059ns is from the routing of the signal. Below is the full report from the synthesis
report:

===
Timing constraint: Default period analysis for Clock Ínst ClockDivider/tog´
Clock period: 7.431ns (frequency: 134.576MHz)
Total number of paths / destination ports: 3484 / 394
————————————————————————-
Delay: 7.431ns (Levels of Logic = 4)
Source: num notes 2 (FF)
Destination: Inst Normalizer/iQ 0 (FF)
Source Clock: Inst ClockDivider/tog rising
Destination Clock: Inst ClockDivider/tog rising
Data Path: num notes 2 to Inst Normalizer/iQ 0
Gate Net
Cell:in-¿out fanout Delay Delay Logical Name (Net Name)
—————————————- ———— FDR:C-¿Q 26 0.525 1.696 num notes 2 (num notes 2)
begin scope: ’Inst Normalizer:num note¡2¿’
LUT4:I0-¿O 1 0.254 0.681 GND 13 o X 13 o wide mux 3 OUT¡2¿11 (GND 13 o X 13 o wide mux 3 OUT¡2¿)
DSP48A1:A2-¿M27 1 3.265 0.682
Mmult note to norm[15] GND 13 o MuLt 4 OUT

42

(note to norm[15] GND 13 o MuLt 4 OUT¡27¿)
LUT5:I4-¿O 1 0.254 0.000 Mmux multi note121 (multi note¡27¿)
FDE:D 0.074 iQ 11
—————————————-
Total 7.431ns (4.372ns logic, 3.059ns route)
(58.8% logic, 41.2% route)

This implies that the maximum possible frequency at which our design can be clocked is 1
7.431 =

0.1346 gigahertz, or fmax = 134.6MHz.

5. Analysis of Residual Warnings
Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 10 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process. WARNING:Xst:1293 - FF/Latch
<note addresses 10 1>has a constant value of 0 in block <KeyboardTop>. This FF/Latch will be
trimmed during the optimization process.

Analysis: These warnings come about because the step size for D (stored in the 10th element of the
note addresses array) is 436, which is divisible by 4. Thus, neither of the two least significant bits will
ever change. Since the value will always be 0, VHDL was able to optimize the design by chopping off
these extra flip flops and hard wiring in the appropriate 0 values for the last two bits.

———————————–
Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 11 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process. WARNING:Xst:1293 - FF/Latch
<note addresses 11 1>has a constant value of 0 in block <KeyboardTop>. This FF/Latch will be
trimmed during the optimization process.

Analysis: These warnings come about because the step size for C]/D[(stored in the 11th element
of the note addresses array) is 412, which is divisible by 4. Thus, neither of the two least significant
bits will ever change. Since the value will always be 0, VHDL was able to optimize the design by
chopping off these extra flip flops and hard wiring in the appropriate 0 values for the last two bits.

———————————–
Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 6 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process.

Analysis: This warning comes about because the step size for F]/G[(stored in the 6th element of the
note addresses array) is 550, which is divisible by 2. Thus the least significant bit will never change.
Since the value will always be 0, VHDL was able to optimize the design by chopping off this flip flop
and hard wiring a 0.

———————————–
Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 9 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process.

Analysis: This warning comes about because the step size for D]/E[(stored in the 9th element of the
note addresses array) is 462, which is divisible by 2. Thus the least significant bit will never change.
Since the value will always be 0, VHDL was able to optimize the design by chopping off this flip flop
and hard wiring a 0.

———————————–

43

Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 8 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process.

Analysis: This warning comes about because the step size for E (stored in the 6th element of the
note addresses array) is 490, which is divisible by 2. Thus the least significant bit will never change.
Since the value will always be 0, VHDL was able to optimize the design by chopping off this flip flop
and hard wiring a 0.

———————————–
Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 1 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process.

Analysis: This warning comes about because the step size for B (stored in the 1st element of the
note addresses array) is 734, which is divisible by 2. Thus the least significant bit will never change.
Since the value will always be 0, VHDL was able to optimize the design by chopping off this flip flop
and hard wiring a 0.

———————————–
Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 3 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process.

Analysis: This warning comes about because the step size for A (stored in the 0th element of the
note addresses array) is 654, which is divisible by 2. Thus the least significant bit will never change.
Since the value will always be 0, VHDL was able to optimize the design by chopping off this flip flop
and hard wiring a 0.

———————————–
Excerpt:
WARNING:Xst:1293 - FF/Latch <note addresses 0 0>has a constant value of 0 in block <Keyboard-
Top>. This FF/Latch will be trimmed during the optimization process.

Analysis: This warning comes about because the step size for C5 (stored in the 0th element of the
note addresses array) is 778, which is divisible by 2. Thus the least significant bit will never change.
Since the value will always be 0, VHDL was able to optimize the design by chopping off this flip flop
and hard wiring a 0.

7.3 Memory Map

Our project used a sine Lookup Table (LUT) that was generated by the DDS Compiler 4.0,
found in the IP Core Generator. This LUT contains 216 incremental values of a sin wave,
where each value is 12 bits long. This requires a substantial amount of block memory (on
the order of 64,000 * 12 bits), but surprisingly we only ended up using 11 block rams to do
it. While we are not exactly sure how the Core Generator and Xilinx optimized our memory,
we do believe that it was able to recognize and exploit the symmetry of the sin wave values,
thus only needing to store 1

4 of the original memory amount. In addition to the apparent flip
flops and registers that are pictured in our block diagram, we also utilized block memory to
store our arrays for the note steps and the current note addresses. The note step values are
what we used to update the value of the note address each time we wanted to sample, so
that we could get the appropriate frequencies for each note. These values remained constant.
The note addresses array stored the current address for each of the 13 notes, and this value

44

was updated then passed into the sin LUT to get the appropriate value for the note on each
sampling cycle.

7.4 Waveform Graphs

Figure 6: These images (chronologically arranged from top to bottom) show the output of our testbench
for the KeyboardTop module, which runs the entire project with all components included. This testbench
is included in the VHDL code section, and the waveform shows all values of the inputs and outputs of the
system, beginning with the buttons and ending with the outputs of the DAC.

45

7.5 Data Sheets

All of our external components were manufactured by Digilent, so there were no additional
data sheets to include.

7.6 Computer Programs

1 % Liane Makatura
% Finding the m values for various frequencies

3

freqs = [261.63 277.18 293.66 311.13 329.63 349.23 369.99 392.00 415.30 440.00 466.16
493.88 523.25];

5

samp_rate = 44100;
7 n_bits = 16;

9 mvals = freqs .* (2ˆn_bits) ./ samp_rate;

11 disp(mvals)

Note Resulting Step Integer M Value
C4 388.8024 389

C]/D[411.9108 412
D 436.4014 436

D]/E[462.3632 462
E 489.8556 490
F 518.9827 519

F]/G[549.8337 550
G 582.5422 583

G]/A[617.1678 617
A 653.8739 654

A]/B[692.7497 693
B 733.9438 734

C5 777.5898 778

Table 2: M-values for our 13 notes, obtained from the MATLAB code sample above. These calculations are
based on a 44.1kHz sampling rate, and 216 samples of the sine wave.

1 % Liane Makatura
% Calculate strength reduction factors

3

denom = 4096;
5

for num=2:13
7 ideal_mult = 1/sqrt(num);

numer = floor(ideal_mult*4000);
9 error = abs((numer / denom) - ideal_mult);

nextdiff = abs(((numer+1) / denom) - ideal_mult);
11 while error > 0.001 || error > nextdiff

numer = numer + 1;
13 error = nextdiff;

46

nextdiff = abs(((numer+1) / denom) - ideal_mult);
15 end

17 fprintf(’Notes: %d\n’, num)
fprintf(’Ideal Divisor: %6.5f\n’, ideal_mult)

19 fprintf(’Multiplier: %d\n’, numer)
fprintf(’Appx Divisor: %6.5f\n’, (numer/denom))

21 fprintf(’Error: %6.5f\n\n’, abs((numer/denom)-ideal_mult))

23 end

From this simple MATLAB program, we were able to generate the following approximations,
which we used to normalize the accumulated frequencies for polyphony:

Number of Notes Ideal Multiplier Integer Multiplier Approximated Multiplier Error
1 1√

1
= 1.00000 4096 1.00000 0.00000

2 1√
2
≈ 0.70711 2896 0.70703 0.00008

3 1√
3
≈ 0.57735 2365 0.57739 0.00004

4 1√
4
= 0.50000 2048 0.50000 0.00000

5 1√
5
≈ 0.44721 1832 0.44727 0.00005

6 1√
6
≈ 0.40825 1672 0.40820 0.00005

7 1√
7
≈ 0.37796 1548 0.37793 0.00003

8 1√
8
≈ 0.35355 1448 0.35352 0.00004

9 1√
9
= 0.33333 1365 0.33325 0.00008

10 1√
10

≈ 0.31623 1295 0.31616 0.00007
11 1√

11
≈ 0.30151 1235 0.30151 0.00000

12 1√
12

≈ 0.28868 1182 0.28857 0.00010
13 1√

13
≈ 0.27735 1136 0.27734 0.00001

Table 3: Consolidated results from the code snippet above. All approximations assume a 12-bit shift (or
division by 4096) after the integer multiplication.

47

