
Balancing Act: An Interactive Tool for Fabricating Calder-Style Hanging Mobiles

Liane Makatura∗

Dartmouth College
Catherine Most†

Dartmouth College
Gloria Li‡

Dartmouth College

Figure 1: An overview of our pipeline, showing (a) our mobile-designing UI, (b) the outputted SVG ready for (c) laser cutting. Then, the user
is able to (d) punch out the pieces and (e) assemble their custom mobile using jump rings and a clear monofilament for suspension.

Abstract

We present a novel end-to-end system that allows users to easily
design and fabricate custom mobiles, mimicking the style of those
designed by famed sculptor, Alexander Calder. These kinetic sculp-
tures are challenging for users to conceptualize, as the relationships
and properties that keep the pendants suspended in a particular lo-
cation are not immediately apparent. Even to those who understand
the relatively simple physics behind mobile balancing, it is very
difficult to construct them manually, as the current state of the art
involves a lot of guesswork, with plenty of room for human er-
ror. These properties, combined with the general appeal of the end
product, make mobiles a perfect candidate for a computational ap-
proach. With our Unity application, users are guided through an
interactive process that allows them to design their desired mobile
in an intuitive, visual way. Our tool does all of the necessary back-
ground computations to ensure the mobile’s desired properties, then
supports the user all the way up to fabrication by outputting a laser-
cuttable file that can be assembled easily and quickly using read-
ily available materials. By making the process more intuitive and
exact, our interactive fabrication tool allows users to explore the
design space for 2-Dimensional Calder-style mobiles more fully.

Keywords: computational fabrication

1 Introduction

Hanging sculptures have existed within the artistic community
since the 1920s when then American artist, Man Ray, created some
of the first specimens. Later in the 1930s, famed sculptor Alexan-
der Calder broke through the formerly narrow limitations of these
sculptures when he introduced his first abstract works. Even at the
time of their introduction, the sculptures were widely appreciated
in the public sphere due to their aesthetically pleasing and uniquely
dynamic nature.

Though the physical concepts behind the mobile’s suspension are
fairly straightforward and well understood from a technical per-
spective, humans are not particularly adept at predicting balanc-
ing points. This is true especially for balancing complex shapes

∗Liane.E.Makatura.17@Dartmouth.edu
†Catherine.Most@Dartmouth.edu
‡Gloria.Y.Li.16@dartmouth.edu

with varying sizes, densities, etc., where even the simplest of con-
struction problems exceeds the human capacity to intuit. As such,
the current state of Calder-style mobile-making relies heavily on
an iterative trial-and-error approach, by which the artist continually
refines a mental estimation for a pendant’s center of mass by test-
ing the orientation of the pendant as it is supported from various
points. This is often done by simply holding the pendant between
the artist’s thumb and pointer finger, in which case it is impossi-
ble to be sure that they are not exerting any additional force on the
object which would skew its otherwise freely hanging orientation.
Even once a satisfactory point is identified, the task still remains to
create a connector at this point, such that the pendant will be able
to suspend from it. Clearly, this process is very time- and labor-
intensive, with an extensive potential for error. This renders the
art of mobile making relatively inaccessible, particularly because
the mobiles are generally very sensitive to inconsistencies – even
a small deviation from the optimal suspension point can result in a
drastic deviation from the mobile’s desired pattern.

However, since the physical underpinnings of this problem are well
defined, the calculations necessary to make one of these Calder de-
signs feasible in the physical world are fairly simple to determine
computationally. Coupled with the recent rise of personal fabri-
cation technologies, a computational system that supports the user
through the entire design and fabrication processes seems partic-
ularly desirable. We seized the opportunity to make this art form
more accessible and customizable to the general public through vi-
sual interactive software. Our application computes the necessary
physical calculations behind an intuitive user interface that allows
any novice user to create physically realizable Calder-style hanging
mobiles with almost no learning curve, and a minimal time invest-
ment for both the design and fabrication phases.

2 Related Work

The physical concepts underlying balancing installations are re-
markably simple, but have spawned a great deal of scientific re-
search. The research has grown tremendously over the past few
years in particular, as rapid prototyping technologies have increased
in both popularity and availability.

The paper from which we drew most heavily is Prévost et. al.
[2013], which proposes a way to optimize 3D models via internal
manipulations such that these models will balance in a particular
orientation upon fabrication, while remaining as close to the user’s
desired visual appearance as possible. This paper primarily deals



Figure 2: Constraints for the placement of the suspension point
p (red dot) for an object with center of mass c (black dot) in a
specified orientation. p must be directly above c with respect to the
direction of gravity, in this case (0,−1, 0).

with objects intended to stand on a flat surface, but peripherally
explores the application of their method to objects intended for sus-
pension. Our project seeks to build on the insight developed here by
extending computational balance optimization to multi-body sys-
tems instead of individual 3D models.

3 Technical Approach

Due to the time constraints of our course project, we focused pri-
marily on the creation of Calder-style mobiles with 2D shapes.
That is, we focused on pendants that were fully defined by their 2-
dimensional outlines, then extruded directly in the z-dimension to
create a uniform material thickness. However, our calculations and
construction approach are generalizable in many different ways.
This section details the high-level formulation underlying our tool.
Our particular implementation of these concepts is left for Section
4.

3.1 Mobile Construction

As described in Mahler’s ”How To” guide for mobile-making
[Mahler 2014], we employ an iterative, bottom up approach to build
up our structures. We begin with our base case, which seeks to bal-
ance individual pendants that are not connected to one another –
that is, we aim to find a point p on the pendant mesh that allows
the pendant to hang in a specified orientation when it is suspended
from that point. As described in Prévost et. al. [2013], we note that
this can be accomplished by ensuring that the p is directly above the
pendant’s center of mass c in the desired orientation with respect to
the direction of gravity, as shown in figure 2.

Having satisfied this constraint, we move on to the multi-body base
case, which involves the connection and subsequent balancing of 2
selected pendants. Mimicking the single-pendant base case above,
we note that the suspension point for this grouping must be directly
above the multi-body center of mass of the group containing the
pendants and the connector which now spans them. Computing
this location is straightforward as before, as we recall that an entity
i can be treated as a point mass located at its center of mass, ci.
Thus, to find the center of mass for this unit, we need only com-
pute a weighted average the three centers of mass together (where
each center of mass is weighted by the mass of the object). We
then shift the suspension point for this grouping vertically upward
(in the direction opposite gravity) until it intersects with one of the
three meshes in the group. In the case of traditional binary Calder-
mobiles, this point typically falls on the connector between the two
original pendants. However, there is a more general d-nary formu-

a) b)

Figure 3: Examples of (a) a suspension point and (b) a connection
point, and potential outcomes. (a) Suspension points (in red) are
calculated once the shape is ready to be hung from a connecting
curve or another shape, and so the center of mass can be calcu-
lated for the shape. Connecting 2 suspension points creates a new
suspension point (in orange) on the connecting curve itself, align-
ing with the new center of mass that falls somewhere in between
the two figures. (b) Utilizing a connection point (in white) shifts the
center of mass from the top shape to the overall unit. At this point,
either the suspension point can be calculated, or another connec-
tion point can be created to balance out the mass.

lation of the mobile problem in which this might not be the case.
Though we focus on the more common binary version in our cur-
rent implementation, our approach is easily generalizable to this
d-nary formulation. Each of these is discussed in greater detail be-
low.

3.2 Types of Points

We have determined two different kinds of points that shapes can
hang from, which allow for generalization in making many different
kinds of mobiles.

Suspension Points Suspension points force shapes to follow a bi-
nary pattern, which is useful for Calder-style mobiles. These points
are the specific point of suspension for a shape, which aligns with
the center of mass so that the shape can hang in equilibrium. Calder
mobiles derive their unique shape from exclusively using suspen-
sion points, so that every shape is suspended by a connecting wire,
and not another pendant. In this approach, the center of mass of a
connected unit falls in line with the topmost connector itself. The
mobile hierarchy contained below this connector can be suspended
from it; the mobile can now be either complete, or treated as a point
mass such that it becomes a child within an even taller mobile.
Once an object is connected by its suspension point, it becomes
essentially immutable, since connecting another object to it by a
non-suspension point would change the center of mass of the con-
nected unit. As shown in figure 3.a, 2 shapes connected by their
suspension points should only result in a new suspension point be-
ing created. Because the center of mass of the objects now lies in
line with the connector, the new suspension point is created on the
connector itself so that the unit can balance and hang from another
object.

Connection Points Connection points follow a d-nary structure,
in that multiple objects can hang from a single object. Connection
points do not necessarily lie in line with the center of mass, and they
usually fall below the suspension point on the object. These points
allow for the creation of tiered and hanging mobiles, which might
have distinct levels or perhaps a top bar that all other objects hang
from. Connection points must be used before suspension points,
so that the suspension point can be calculated based on the center
of mass of the entire hanging unit. Top shapes can therefore have
multiple connection points. As shown in figure 3.b, shapes that link



a) b) c)

Figure 4: Visualization of our sampling method for calculating
center of mass, with sparse sampling (a) showing positive (green)
and negative (red) hits, then isolated positive hits (b) for clarifica-
tion. Image (c) visualizes the actual density at which we sampled in
the app (which is 0.01 units). The density of this sampling provides
great enough precision for our purposes.

to a top shape must link by their suspension points, to ensure that
the hierarchy below the top shape is balanced. Once a shape uses
a connection point, 2 outcomes are possible: another connection
point is created, or a suspension point is calculated.

While we have not yet directly implemented connection points in
our application due to time constraints, differentiating between con-
nection and suspension points enabled us to generalize mobile cre-
ation and differentiate Calder styles from other styles. Suspension
points are more difficult to compute than connection points, so gen-
eralization and future implementation of connection points would
be relatively straightforward.

4 Implementation

We opted to implement our tool using Unity 3D, because it offered
a well-tested visualization and interaction platform, while also giv-
ing us a powerful scripting API and strong debugging capabilities
within the Unity environment. As with any environment, there were
a few limitations that had to be circumvented, such as the fact that
most of the physical simulation code is approximate, and most of
the interactions we were trying to utilize (i.e. object dragging, mesh
import/export, and custom mesh generation at run-time) are only
supported in the editor mode (when the apps are being built) as op-
posed to the play mode (when the app is in use). However, we were
able to overcome most of these issues in our application.

Our implementation code and assets for this project can be found at
https://github.com/LianeMakatura/Balancing_Act,
which contains the meshes used, the C# scripts for physical cal-
culation and user flow, and all assets required for the Unity
framework.

4.1 Physical Calculations

As noted above, much of the physical simulation code found in
Unity is approximate. This is due to the fact that it needs only be
precise enough to look convincing for gaming, which is Unity’s
primary use case. We therefore overrode most of Unity’s related
functionality with our own scripts, to enable a level of precision
high enough that a mobile’s desired properties would be maintained
once fabricated.

For this project, the main physical component to override is the cal-
culation of the center of mass for an arbitrary mesh. Since we are
working only with meshes that have uniform thickness, and assum-
ing a uniform density in the final material, we note that the problem
can be reduced to 2-dimensions (x and y). Assuming a uniform
distribution of points across the object’s mesh, we would be able to
calculate the center of mass by simply averaging the position of all

the vertices in 3D space. However, we cannot use the mesh directly
for this task, because some sections of a given mesh are potentially
more detailed than others, which could artificially skew the cen-
ter of mass calculations due to the presence of more vertices in a
particular area.

To combat this, we leverage a ray-casting approach that uniformly
samples the space determined by the bounding box of the pendant.
Each of these rays is cast from the camera plane toward the mesh,
and subsequently labeled as either a ”hit” or a ”miss” with respect
to the pendant mesh in question. If the ray fired from position (x,y)
does hit the mesh, we add the coordinates of the ray into our run-
ning position sum total pos (which is a vector), then we incre-
ment the number of hits, num hits, by 1. Otherwise, we ignore
the ray. After we have sampled the entire space defined by the
object’s bounding box, we compute the average position by calcu-
lating total pos/num hits. Given our assumptions, as discussed
above, the resulting vector corresponds to the pendant’s physical
center of mass. A visualization of this process can be seen in figure
4.

After finding the center of mass, we calculate the suspension point.
The suspension point must be directly above the pendant’s center
of mass, and it also must be located at the top-most intersection of
the object along this direction, to ensure proper suspension. This is
done by initializing our guess for the suspension point location as
the object’s center of mass: temp = susp pos = c. The z value
of temp is changed to be that of the camera, so that we can follow
another raycasting approach to compute the suspension point. We
incrementally increase the y value of temp until it reaches the y
value of the maximum bound in the bounding box; this moves our
guess in the direction opposite gravity, denoted by (0,−1, 0). At
each iteration, we cast a ray from temp toward the object mesh, and
label it as a ”hit” or a ”miss” with regard to the pendant in question.
If the ray is a ”hit,” we update our current estimate susp pos =
temp, since we have found a new highest intersection point with
the mesh along the desired direction. Else, we ignore the ray. By
the time we have reached the upper bound of the bounding box, we
know that susp pos is correct if we proceed in this manner. The
visualization from this process can be seen in figure 2.

To recursively group selected objects together in order to form the
mobile, we compute the multi-body center of mass as specified
in section 3.1. This group is now treated as a single multi-body
pendant, which possesses its own suspension point, calculated as
above. The multi-body pendant can now be connected to other parts
of the mobile in the same way that a single pendant object could.

We had also hoped to incorporate an in-line physical simulation,
so that users could verify their designs in equilibrium, and also ex-
periment with how the shapes moved when they were slightly per-
turbed. However, we were not able to reconcile our approach within
the Unity API during the allotted time, so this feature has been left
as an area for future work.

4.2 Work Flow

Given Unity’s limitations, some work-around is required to create
physically realizable mobiles. We include prefabbed meshes in our
Unity app, which require pre-processing of meshes before they can
be used successfully. The Unity app allows the user to access these
meshes and create a mobile that is exportable as an .obj file. Once
this file is created, further post-processing is required to slice to the
file into .svg format before it can be sent to the laser cutter.

Pre-processing In order to make the work flow as seamless as pos-
sible for the user, we utilize pre-selected meshes. This eliminates
many possibilities for unexpected problems with user input. Our



a)

b) c)

Figure 5: (a) Screen-capture of the app in use. (b) The sidebar on
the right contains a drop-down menu for shape themes, buttons for
selecting different meshes, and buttons for connecting and complet-
ing the mobile. (c) Selecting a shape generates a draggable mesh
with a suspension point, as seen with the Stegosaurus in the top-
right corner. The user creates connecting bars and holes by select-
ing 2 unused suspension points (red spheres) and clicking ’Connect
Components’. Currently, there are only 2 remaining suspension
points: above the topmost connector, and above the newly added
Stegosaurus.

Figure 6: The progression of files for our user flow.

pipeline allows us to begin from a 3D model or a 2D image. The
pre-processing for a 3D model begins with an .obj file of the desired
pendant, which we then slice into layers along a specified direction
using the freely available software, Slic3r. From the layers out-
putted by Slic3r, we identify the correct central layer as our desired
.svg for input. Alternatively, for a 2D image we can begin directly
with an .svg file of the intended shape. From the vector .svg file we
input the shape into Tinkercad to easily extrude the 2D shape into
a 3D shape of uniform thickness. This creates a shape with simi-
lar visual feel to the final laser cut outputs for the user and makes
the final slicing step easier to compute. These .obj meshes with uni-
form thickness are the meshes that our app directly references when
instantiating the prefabricated pendants in the GUI.

Unity app Once the .svg files have been converted into the appro-
priate .obj meshes, they can be input as assets into Unity. We place
the meshes in a ’Resources’ folder within ’Assets’, which allows
Unity to load them internally and display them on the screen. Each
mesh is appropriately scaled so that each of them are of roughly
uniform size. The center of mass and suspension points are also
calculated so that a red sphere can be placed at the appropriate sus-
pension point, which is just above the mesh and in line with the
center of mass.

The user begins using the application and accessing the different
meshes through the sidebar. The sidebar within the application
contains a drop-down menu, 6 buttons corresponding to different
meshes, and buttons for connecting components, completing mo-
bile creation, and exporting a .obj of the mobile. All buttons are
muted on start, but become un-muted by choosing a theme from the
drop-down menu. The three themes - marine animals, dinosaurs,
and Star Wars - contain 6 meshes each, and clicking a theme pop-
ulates the 6 buttons below with the mesh options pertaining to that
theme. Clicking a mesh button generates the mesh and its suspen-
sion point in the middle of the screen, which the user can drag into
the desired position. The suspension point is defined relative to the
pendant frame, so it moves appropriately as the mesh is dragged
through the space. To create connecting bars and toruses that will
allow for construction after fabrication, the user selects 2 suspen-
sion points from 2 different meshes and clicks ’Connect Compo-
nents’. The resulting bar contains its own suspension point, which
is aligned with the center of mass of all previous connections. Once
the meshes are connected, that section and all sections below it in
the hierarchy become immovable.

Building mobiles with a bottom-up approach ensures that at any
point, the mobile can be hung from the top bar’s suspension point.
Whenever the user decides that their mobile is complete, they
can click ’Finish Creation’ to automatically generate a final torus
around the suspension point of the top bar. At this point, all mesh
buttons and the drop-down menu become muted. The mobile can
now be exported with all shapes, connectors, and holes in place.
Clicking ’Export OBJ’ brings up a wizard allowing the user to
select options for exporting. Exporting functionality is provided
through the ’OBJExporter’ package from the Unity Asset Store,
which has been modified to be accessible by the user at run-time,
instead of in its default location in developer’s Unity editor.

Post-processing: The mobile designed by the user in Unity is out-
put as a 3D .obj file centered around the xy-plane (at depth z = 0)
for easy slicing of the 3D object into a 2D .svg file. The slicing al-
gorithm (provided by Slic3r) outputs the multiple slices of the .obj
file in one .svg file that needs to be cleaned up in a product such as
Adobe Photoshop or Illustrator, so that it only includes the single
central slice which will have all of the fittings for the connectors
and pendants. With a single .svg file output containing the correct
2D slice of the hanging mobile, the user is nearly ready to sub-
mit their project to a laser cutter for fabrication. Depending on the



Figure 7: Successful user fabricated hanging mobile results

type of laser cutter, the .svg file might need to be converted to the
universal file type of .dxf; this is required particularly in the event
that the user must work with older or more file-limited laser cutting
software.

We acknowledge that this file-transfer pipeline is somewhat con-
voluted, and we would like to simplify this process as part of our
future work to make the application more directly usable.

4.3 Fabrication

The fabrication process begins with simple file input, of the .svg
obtained in the previous steps. Our application was designed for
1/8-inch thick acrylic sheets, due to the fact that plastic has uniform
thickness (as opposed to wood). It also allowed users to have the
most flexibility in the visual customization, as it is readily available
in a wide array of colors and other special properties, like mirrored
backings or a glittery appearance. The application output pattern
exactly mimics the Unity visualization, so after the pieces have
been punched out of the sheet, the remnants are able to serve as
an assembly guide. This helps the user as they are connecting each
laser cut part to one another with metal jump rings.

Over the course of multiple user tests we were able devise a power
of 100 and a speed of 1.2 as the best settings to use with a LaserPro
C180 Desktop laser machine (which is what was easily available
for our testing). Experimentation with individual machines may
be required to ensure that the pieces are properly, safely, and fully
severed.

5 Results

By thoroughly prototyping in the beginning stages of our project,
we were able to determine slight differences in the angles, due to
the fact that we didn’t account for mass introduced by connection
toruses or jump rings. Also, we were able to make adjustments to
the support bars to be thicker in order to support the full weight of
the pieces which we were not accounting for. By the end of the
project, these iterative improvements allowed us to create mobiles
that matched the design specs in Unity almost identically. Some of
our final creations can be seen in figure 7.

User tests also provided insight into the intuitive nature of the ap-
plication. An experienced user first designed their own mobile as
the user tester watched, and then the user tester was allowed to go
through the application and design a mobile. This method showed
promising results, with all users excited to design and later see their
own mobile. The main drawback of mobile creation was the lack of
knowledge about Calder mobiles, which led to some initial confu-
sion about what kinds of mobiles could be created - however, most
users were able to quickly gain an understanding of what mobiles

Figure 8: Larger objects caused the original connectors to sag,
seen especially in the top connector.

they could create, and the best ways in which to create them.

In addition to our tool’s confirmed intuitive nature, the physical re-
sults from our formative user studies and demos were very promis-
ing. All were user designed mobiles which came out as fully fabri-
cable balanced hanging mobiles without any structural problems.

6 Limitations and Future Work

Our application accomplished our primary goal, which was to cre-
ate software that would successfully generate balanced mobiles
based on user-input shapes and placement. Limitations within our
application mostly stem from the lack of time to implement, as well
as Unity’s inherent limitations. Users can create mobiles only from
prefabbed meshes, and the mobiles that the app can create are pri-
marily Calder-based. Unity does not provide support for easy input
of SVGs or other files, and assets that allow for file input work
only from the Unity editor. In-app file inputting is therefore not
implemented. Moreover, file outputting was only possible through
3rd-party assets, and only exportable as OBJ. As laser cutters do
not accept OBJ files, actual mobile cutting requires the user to slice
SVGs from the OBJ file, adding another level of inconvenience.

User flow has its own limitations, partly due to time constraints
and partly due to Unity’s lack of support for direct mesh manipu-
lation. The user cannot resize or delete meshes once the meshes
are selected, and if shapes and connectors directly intersect they
will not be separated in the post-processing slicing. Unfortunately



this means that meshes must be placed, so that connectors do not
intersect the meshes or each other.

One limitation that came about through fabrication testing was the
weight limit of the connectors themselves. Smaller mobiles created
very fragile connectors which broke easily, and as shown in figure 8,
larger mobiles created heavier shapes that caused longer connectors
to sag heavily. We solved this problem by increasing the thickness
of the connectors from 0.1 to 0.2.

Future work would focus on addressing the limitations of file input
and output within the app. Implementation of connection points
would also be possible, since suspension points are calculated and
click-able. User control over connection points would be the main
focus of this implementation. In the same vein of generalizing mo-
bile creation, perhaps the most difficult work we would like to un-
dertake in the future would be creation of curved connectors, either
as prefabbed meshes or as user-created Bezier splines. Much of
Unity’s limitations revolve around lack of support for direct user
manipulation, which would hold true for spline creation.

7 Conclusion

This project explored the design and fabrication space of balancing
Calder style mobiles. The challenges we set out to tackle were very
user centric with the goal of seamless file conversion and user con-
trol of shapes, while also featuring a computational component that
had to respect physical constraints of the desired mobiles. In the
short four weeks we had to accomplish these challenges we were
able to make great steps towards the goal of seamless integration.
Users were delighted by the interface and the simple design of the
interface. There were more requests for fully fabricated mobiles
from users than we were able to fabricate. Users understood and
appreciated the novelty and balancing magic the application was
able to do for them on the fly. The simple laser cut-table vector
file output was easily understood and intuitive to the users for easy
assembly.

Acknowledgements

We thank Professor Emily Whiting and our peers in CS89/189:
Computational Fabrication for their guidance and helpful com-
ments. Our peers in the DALI Lab also showed great interest in
the project throughout the term and gave valuable feedback as user
testers. We thank Tim Tregubov as well for providing valuable as-
sistance with project conceptualization and technical Unity support.

References

MAHLER, M., 2014. From the artist: How to make a
real mobile. http://www.houzz.com/ideabooks/34452702/list/
from-the-artist-how-to-make-a-real-mobile. Accessed: 2016-
06-2.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make It Stand: Balancing shapes for
3D fabrication. ACM Transactions on Graphics (proceedings of
ACM SIGGRAPH) 32, 4, 81:1–81:10.

http://www.houzz.com/ideabooks/34452702/list/from-the-artist-how-to-make-a-real-mobile
http://www.houzz.com/ideabooks/34452702/list/from-the-artist-how-to-make-a-real-mobile

