
Tools for Physical Graphic Design

Liane Makatura∗

Dartmouth College
Hannes Hergeth†

RWTH Aachen University
Danny M. Kaufman‡

Adobe Research
Wilmot Li§

Adobe Research
Emily Whiting¶

Dartmouth College

(a) (b) (c) (d)
Figure 1: An overview of our physical graphic design pipeline, which allows users to create complex physical artifacts from traditional vector
graphic designs. Our current implementation (a) features side-by-side views of an editable artist representation (left), and the corresponding
regions for fabrication (right). Once the user is happy with their design, it can be exported to an SVG, and (b) manually nested into a
fabrication layout. Then, the user is able to (c) mill their design and (d) assemble their custom intarsia piece.

Abstract

The expansion of rapid prototyping technologies offers unprece-
dented opportunity for custom manufacturing, yet viable functional
design requires considerable time, effort, and domain-specific
knowledge on the part of the designer. This is largely due to the
fact that there is a fundamental discrepancy between the design and
fabrication stages of this process: the underlying representations
that allow for intuitive edits and constraint checking in the aesthetic
design process are ill-suited for these challenges in the fabrication
stage, and vice versa. However, this process is inherently a
conversation between what is necessary for fabrication, and what
is desired for design. Lack of suitable communication channels
between the two often results in long, arduous feedback loops with
lots of duplicated effort. We focus on bridging this gap by devel-
oping a system for the intuitive design and iteration of fabricable
vector graphic illustrations. While there are many artistic endeav-
ors that fall under this domain of physical graphic design (vector
graphics meant for physical realization), this project focuses on
developing a fabrication-aware regime for Intarsia, a traditional
wooden mosaicing technique. We present a system which exploits
the dual nature of fabrication-aware design to allow the artist to
work in a traditional ”art” workflow, while simultaneously viewing
the effect of their edits in a synchronized fabrication representation.

1 Introduction

Vector graphics are very popular in traditional graphic design be-
cause of their flexibility in a number of different scales and con-
texts, such as digital displays or print media. However, these vector
graphics can also be used to realize more complicated physical ar-
tifacts, such as stencils, laser-cut engravings, and even custom tex-
tiles or embroidery. The latter pipeline – using a traditional vector

∗Liane.E.Makatura.17@Dartmouth.edu
†hannes.hergeth@rwth-aachen.de
‡kaufman@adobe.com
§wilmotli@adobe.com
¶emily@cs.dartmouth.edu

a)

b) c)

Figure 2: Samples of professional intarsia pieces, featuring (a)
”African Elephant” by Steve Bundred, (b) a standard beginner
”Rose” pattern, and (c) ”Monticello” by Mike Mathieu.

graphic in order to realize a complex physical object – is what we
refer to as physical graphic design. Currently, however, it is very
difficult to translate arbitrary digital designs into successfully fab-
ricated objects that resemble the original design. This is because
the artistic process neglects to consider any design constraints that
are imposed by the fabrication method itself. In this project, we at-
tempt to define and improve upon the current state of the art in com-
putational fabrication for one specific example of physical graphic
design: intarsia.

Intarsia is a traditional woodworking technique that uses varied
shapes, sizes, and species of wood fitted together to create a mosaic-
like picture with an illusion of depth. After selecting the desired de-
sign and materials, an artist carefully arranges the individual pieces
on wooden boards, seeking to minimize waste while exploiting
natural properties such as color variation or grain patterns. Each
piece is cut out with a scroll saw, before being sanded, shaped,
and fitted to the remaining pieces. Intarsia is both labor- and time-
intensive: ”Monticello” (Figure 2) consists of over 800 individual
pieces, crafted from 17 species of wood. A professional artist de-
voted over 150 hours to this piece over the span of two months.

Intarsia often requires the experience of a skilled craftsman, as the

process is highly error prone. Each piece is manually fabricated
independently of the others, yet they must fit together snugly in
order to create the desired effect. This makes the art even more
elusive for beginners, as even tiny deviations can compound in a
big way in the final design.

However, intarsia designs are typically composed of a set of simple,
closed regions. This simplicity holds even in the case of modest
shaping along the top face, which is often meant to remove sharp
edges, texture flat surfaces, and/or create a sense of depth within
the piece. These surface details could be represented as a height
field on top of the original boundary vectors. Thus, these patterns
are well within the capabilities of rapid prototyping technologies
like CNC milling. The use of such technologies could make the
art accessible to novice users by reducing production errors, and
decreasing the high time requirement of manual construction. For
this reason, Intarsia is a great candidate for computational design
and realization.

As previously discussed, this goal of realizing physically valid in-
tarsia from traditional graphic designs presents a problem which
is not yet understood. In particular, we must define a robust, in-
tuitive process for translating between an artist’s design and some
representation which will be suitable for a computerized fabrication
process. This latter stage requires a fundamentally different repre-
sentation of the design, which is not readily accessible in the artist’s
original rendering.

To solve this problem, we conducted a thorough exploration of the
design space, both theoretically and practically. Our theoretical
exploration defines the dual representation between art and fabri-
cation, seeking to understand the merits and limitations of each
depiction. We then identify a practical approach to our problem,
constructing a pipeline of existing technologies – such as Adobe Il-
lustrator, Otherplan, and the desktop milling machine Othermill –
in order to manually realize the process that we hope to compute.
Finally, we present an interactive system which exploits our find-
ings in order to expedite the process of iterative fabrication-aware
design.

2 Related Work

Inspired by the growth of rapid prototyping technologies, re-
searchers have poured significant energy into the creation of in-
tuitive, fabrication-aware design paradigms. Several systems au-
tomatically optimize 3D models with respect to specific post-
fabrication metrics like stability or adherence to a prescribed mo-
tion [Prévost et al. 2013; Bächer et al. 2014; Stava et al. 2012].
Several others seek constraint satisfaction through interactive de-
sign tools, which guide the user toward a physically plausible de-
sign while preserving the user’s ownership of the design [Umetani
et al. 2012; Yao et al. 2017]. All of these methods seek to ensure
that the final product performs as desired, but they must also ad-
dress (even if implicitly) the interesting design constraints posed by
the fabrication process itself.

Such fabrication-aware approaches have also been applied to series
of stacked or intersecting planes. In theory, this lower-dimensional
space is easier for humans to decompose and reason about. How-
ever, research in this area has exposed many interesting problems
that are not accessible without computational assistance. Exam-
ples include the intuitive modeling of planar structures [McCrae
et al. 2014], the design of assemblable planar structures with non-
orthogonal joints [Schwartzburg and Pauly 2013], and the interac-
tive design and optimization of free-formed planar-piece model air-
planes [Umetani et al. 2014].

Even in the case of 2-dimensional artifacts, the constraints imposed

by fabrication can make it difficult to create valid designs by hand.
One work considers the 2-dimensional craft of realizable stencil-
design, where each color layer must form a single connected com-
ponent while deviating as little as possible from the desired im-
age [Bronson et al. 2008; Jain et al. 2015]. Another work creates
custom image-based jigsaw puzzles, where piece contours mimic
a user-defined profile, while also ensuring that the pieces are suffi-
ciently interlocked [Lau et al. 2014].

In this body of work, one common challenge is the need to rec-
oncile the fundamental discrepancy between the formats that are
intuitive for object design or editing, and those which are necessary
for object realization. A system for wire-wrapped jewelry auto-
matically decomposes pixel or vector designs into a minimal set of
continuous, low-curvature wire paths for fabrication [Iarussi et al.
2015]. We have also seen systems for garment design [Umetani
et al. 2011], that enable synchronized, bidirectional editing between
the traditional art and fabrication representations. This system ex-
ploits the complementary strengths of each representation, which
provide intuitive solutions for complementary subsets of edit types.
This emphasis on intuitive edits pervades in semantic shape editing
[Yumer et al. 2015] and Lillicon [Bernstein and Li 2015], which en-
ables users to directly edit the negative space created by explicitly
represented objects. This is very similar to the goal of this project,
as we consider simple regions enclosed by a series of open Bézier
curves.

Our implementation is also largely enabled by the mathematical
groundwork in planar mapping, a topic derived from graph theory.
Since their introduction as a natural dual of explicit line representa-
tions [Baudelaire and Gangnet 1989], planar maps have been used
extensively in computer graphics. Planar map representations typ-
ically destroy the original vectors defining the art, making them an
undesirably ”one-way” operation, which does not allow for intuitive
edits to the design after its conversion. The current state of the art
in ”dynamic” planar map illustration, introduced in 2007, provides
several heuristics which allow the user to alter the planar-mapped
design with their original strokes [Asente et al. 2007]. An imple-
mentation of this concept can be found in Adobe Illustrator, under
the name Live Paint. We make extensive use of this implementa-
tion, both in our initial problem exploration and our final compari-
son with existing methods.

3 Dual Design Representation

We consider the direct realization of an existing commercial pat-
tern, with no edits. Vendors commonly distribute these patterns in
the form of a PDF, so it is straightforward to extract an SVG of
the design. Traditional hard copy patterns can also be processed
into a vector graphic, by scanning the image then using standard
techniques such as Canny edge detection [Canny 1986] to obtain
the contours of each piece. However, in each of these cases, the
patterns require additional processing to arrive at a fabricable de-
sign. In particular, we note that the patterns are often specified in
an artistic view.

This ”art” representation follows the traditional paradigm for vector
graphic design, where the image is comprised of many independent
vectors that trace out semantically meaningful contours. They are
constructed in such a way that it is easy for an artist to work with
them: (a) the pieces are configured in their ”assembled” form, as
they will appear in the final design, and (b) the contours are spec-
ified in a manner that caters to the designer’s intent. The ”Art”
representation is a very familiar workflow for artists, so there are
obvious benefits for its use in our application.

Figure 3: Left: The ”art” representation; note that the pink region
is defined by the negative space enclosed by 3 separate vectors.
Right: The ”fab” representation; here, the pink region is explicitly
represented by a single closed curve that can serve as a toolpath.

It is also particularly adept for enforcing aesthetic constraints, or
allowing for aesthetic edits such as:

• modifying (smoothing, simplifying, adding detail to) a bound-
ary,

• multi-scale editing (i.e. moving an internal boundary but pre-
serving the overall silhouette),

• maintaining perceived continuity across multiple pieces, and

• ensuring proper offsets of the boundaries, so pieces fit to-
gether with desired tolerance.

If we assumed that the lines between individual pieces were thick
enough for a bit to pass through, we would be able to cut out the
pattern precisely in this assembled form. However, this approach
would leave large gaps between adjacent pieces, while prohibiting
the use of multiple materials or artistic grain orientation. Since
this method would impose far too many undesirable properties,
we deem the ”art” representation is unsuitable for direct computer-
controlled fabrication.

Instead, we consider a representation that mimics the artisan inter-
pretation: we prioritize each individual face of the design, explicitly
encoding the closed regions themselves, rather than the boundaries
between them. These closed regions can then be milled and assem-
bled to form the final Intarsia piece. This ”fab” representation is
not intuitive for the kinds of aesthetic constraints mentioned above,
but it is quite advantageous given our end goal of physical realiza-
tion. Its similarity to the final fabricated output also makes it easier
to detect and address issues with fabrication related edits and con-
straints, like the following:

• reducing high curvature regions that are too extreme for the
endmill to cut,

• increasing space between pieces in the final fabrication layout,
and

• dividing pieces that are too large for the given material.

These constraints are instrumental to the physical plausibility of the
design, but they are woefully absent in the artistic representation.
This forces the artist to follow all the way through with a design
(often to the stage of fabrication) before discovering that it is infea-
sible for one of the reasons listed above.

The first strength of our approach is one that has been sought be-
fore: intentionally including, validating, and flagging violated fab-
rication constraints in the design process, so issues can be addressed
before fabricating. This saves time, materials, and frustration on the
part of the user. Moreover, intentionally utilizing both halves of this

dual representation accounts for the fact that different edits and con-
straints are more easily executed or validated in different stages of
the pipeline.

To fully harness the orthogonal strengths of these duals, we imag-
ine a single editing paradigm that allows for direct, bi-directional
communication between two presently incompatible stages of the
design process. This will enable users to consistently work in the
domain (”art” or ”fab”) that is most suited to a particular issue,
entrusting our tool to propagate those changes back to the other
representation for continued synchronicity.

As a step toward this goal, we present a system which dramati-
cally improves the forward pass of this algorithm by presenting the
two views side by side, and automatically propagating any edits
made to the art view. This feedback can seamlessly inspire further
edits in the art view, guiding the user toward a realizable design
while preserving their full artistic control. Even in the absence of
bidirectional editability, our system provides communication that
makes the pipeline for fabricable design more intuitive and produc-
tive, shortening the iteration loop while moving one step closer to
predictably fabricable graphic designs.

4 Implementation

Our current implementation relies on real-time, continuous feed-
back to inform the user about the impact of their artistic edits in
the fabrication domain. In order to realize this vision, we needed to
implement both an intuitive user interface and a number of geome-
try processing operations which operate behind the scenes. In this
section, we discuss our final implementation of these elements.

4.1 Geometric Operations

At each iteration of our algorithm, we must transform a set of Bèzier
splines into a set of closed regions suitable for fabrication. To do
this, the input SVG must be (a) flattened into a set of polylines,
(b) mapped into a planar graph, and (c) offset along the normals of
the boundaries. Each of these steps are described in detail below,
accompanied by a motivation for their inclusion.

Bèzier Flattening Immediately after parsing the user-specified
SVG, we approximate the design with a set of polylines. A poly-
line is a curve with C0 continuity: that is, a curve composed of
one or more line segments that are sequentially connected at their
endpoints, but that need not share their tangent lines. To main-
tain analytic correspondences between the polyline endpoints and
our original curve controls, we compute this polyline representa-
tion from the provided Bèzier curves using de Casteljau’s recur-
sive subdivision algorithm. Our subdivision terminated after the
curve segments being approximated passed a simple flatness crite-
rion [Fischer 2000].

There has also been further research on efficient polyline approx-
imation for Bèzier curves, which improve upon the algorithm’s
stopping criterion to reduce the number of segments that are di-
vided unnecessarily [Hain et al. 2005]. Optimizing our approxima-
tion could be an interesting extension in order to ensure that the
final designs are as compact as possible for their specified accu-
racy. Fewer segments could boost the performance of several oper-
ations down the line, including tolerance offsets, validity checks, or
future-endeavors such as 2D nesting (optimal layout) for the final
fabrication configuration. However, we found that our implementa-
tion was generally sufficient for our needs.

(a) (b) (c)

Figure 4: Comparison between the provided bèzier curves (black)
and our flattened polyline approximation (red). The three small re-
gions display the effect of our sanitization scheme to remove the
small overhangs from each intersection: (a) unsanitized output,
where red precisely follows black, with overhangs included; (b)
sanitized output, where the orange lines follow the black curves in
all locations except in the overhangs; and (c) final sanitized output,
showing show clean graph structure.

The polyline conversion was motivated by our desire to build a
fabrication-aware design tool. In order to accurately represent and
analyze fabricable designs, it is necessary to consider the final out-
put that will be passed to the machine. The relevant scheme for
milling is g-code, a popular numerical control (NC) language that
will transform the artist-drawn design into a series of discrete mo-
tions realizable by a machine. Permissible motions include those
along line segments and circular arcs. Since this conversion would
eventually affect the final result, we decided to work with a segment
representation from the outset of our pipeline. This conversion also
offered a number of other benefits which will be discussed through-
out the paper. Thus, it was well worth the additional pre-processing
time, and the slight deviation from the user-specified parameteriza-
tion.

Planar Mapping We recall that our fabrication method requires a
set of closed regions that can serve as the basis for a tool path. The
polylines computed above are simply approximations to the original
bèzier curves, so they remain firmly in the art view. To compute the
fabrication view from this set of polyline curves, we employ planar
maps.

Planar maps derive from the concept of planar graphs in graph
theory. A planar graph is a graph for which there exists a 2-
dimensional embedding of said graph such that no edge intersects
with any other edge. A planar map is a function which com-

G G’

f

Figure 5: We use planar maps to convert the artistic vectors to
closed regions. A planar graph is a graph that can be embedded
in a 2D space such that no edges overlap. The two diagonals in
G violate this constraint, so G is not a planar graph. By applying
the planar map function f , we can convertG into its corresponding
planar graph,G′. We can then traverse directed cycles in the graph
to obtain the counterclockwise-boundary (ccb) of each face.

putes a planar graph G′ from a given set of edges and vertices,
G = (V,E). In our context, the input graph G is the set of
polyline curves, which trivially has a fixed embedding in the 2D
plane. Since edges can (and frequently do) cross one another in
this given configuration, G need not be planar. Let us denote with
Pcross the set of points at which two edges of G cross one another.
Given our fixed 2D-embedding, it is then easy to see that the graph
G′ = (V ∪ Pcross, E

′) is planar, where E′ reflects the edges of
E that have been broken into smaller pieces to accommodate new
vertices.

Our planar map algorithm does precisely this, adding a vertex into
G′ for every edge intersection point p which violates the planar
graph condition in G. Since G′ has a vertex defined at every inter-
section, it is now possible to relabel the graph edges in such a way
that each face is defined by a simple, directed cycle. This cycle,
called the counter-clockwise boundary (ccb), forms the basis of our
fabrication representation.

While they are conceptually simple, robust planar mapping algo-
rithms are difficult to perfect: aside from Illustrator’s proprietary
Live Paint tool, there are very few tried and tested implementations.
We compute planar maps using the open source Arrangement2 im-
plementation found in the Computational Geometry Algorithms Li-
brary (CGAL) [Wein et al. 2017].

It is worth noting that the Arrangement2 library imposes some lim-
itations on the project that directly affect the end user. In contrast to
Live Paint, CGAL lacks a gap or tolerance parameter that allows the
algorithm to infer intersections between curves that are within some
small radius of one another. This means that the user is responsible
for ensuring the explicit existence of all intersections intended in
their design. While this is not a terrible imposition on the artist, it
is counter to their normal mode of operation, in which aesthetics
take priority. With this metric, junctions need only be visually per-
ceived, as opposed to analytically present. These two metrics yield
considerably different results, so the need to artificially extend each
intersecting line segment conflicts slightly with our desire to pre-
serve the artist’s traditional design flow.

As discussed further in Section 7, the use of this library presented
several additional challenges. However, in general, it suited the
needs of our project well, and many of the inconveniences that re-
main can be addressed with clever heuristics in the pre- and post-
processing stages.

dx < 0 dx = 0 dx > 0
dy

 <
 0

dy
 =

 0
dy

 >
 0

p0

p1

p0 p1

p0

p1

p0

p1

p0p1

p0

p1

p0

p1

p0

p1

n = (+, -)

n = (0, -)

n = (-, -)

n = (+, +)

n = (0, +)

n = (-, +)

n = (+, 0)

degenerate

n = (-, 0)

m = (-, -)

m = (-, 0)

m = (-, +)

m= (+, -)

m = (+, 0)

m = (+, +)

m = (0, -)

m = (0, +)

Figure 6: To determine the normal along which to offset, we
imagine walking along each segment (from p0 to p1) as part of a
counter-clockwise trajectory. Here, we denote the slope m of each
line, along with our desired normal, n. By comparing them, we ob-
serve that the desired normal direction is always (−dy, dx), where
dy is the signed vertical difference between the two endpoints, and
dx is the signed horizontal difference.

Boundary Offsets To ensure that the pieces will fit together prop-
erly once fabricated, we need to impose a slight boundary offset
that shrinks each region by a given tolerance δ. This amount can be
specified by the user, and it is relative to the absolute scale of the
final constructed artifact.

To compute this offset boundary, we first consider naive rescaling
of the piece. Purely convex regions can be shrunken effectively
in this way, but this requirement is too restrictive for complex in-
tarsia pieces. Instead, for each face we offset the segments of the
counter-clockwise boundary (ccb) by shifting them δ units along
their normals. Our desired normals will point toward the interior of
the face. To determine the normal sign, we imagine walking along
the segment’s trajectory: since we are traversing the segments coun-
terclockwise, we always want the normal pointing ”left.” As shown
in Figure 6, this means our desired normal is always oriented along
the direction (−dy, dx), where dy is the signed vertical difference
between the endpoints p0 and p1, while dx is the signed horizontal
difference.

Once we determine the line (y = mx + b) along which our offset
segment should be placed, we need to determine the locations of the
vertices. We cannot simply offset the existing vertices because the
displacement along the normals may cause neighboring segments to
intersect with, or become disconnected from, one another. To solve
this, we compare adjacent segments’ offset lines, and analytically
solve for their intersection point, p. We place the intersection point
between the two segments at p, extending or shortening the edge on
either side accordingly, to ensure that our offset polylines maintain
C0 continuity.

4.2 Work Flow

In conjunction with these operations, we developed an interactive
user interface that presents the dual representations side by side.
The traditional art view is on the left, and the fabrication view is on
the right. Once the user has populated the art view with their cho-
sen SVG, our system automatically computes and displays the cor-
responding fabrication representation. As the user continues to edit
their design in the art view, we provide real time feedback about the

(a)

(b)

(c)

(d)

Figure 7: Typical user flow for our system: (a) load in an SVG and
immediately view the corresponding fabrication representation; (b)
enable editing features by toggling the buttons at the bottom; (c)
edit the art view (left), while receiving continuous synchronized
feedback about the implications of those edits in the fabrication
view (right). Finally (d) export an SVG, and verify that it matches
the system’s computed design.

implications of their edits on the fabrication representation. Below,
we present an overview of the system.

Data Input/Output Given the striking similarity between artists’
intarsia patterns, machinable contours, and traditional vector
graphic design, we chose to support SVG files for input and out-
put. The CGAL Arrangement2 library does not natively support
file input or output, so we built several parsers to interface between
SVGs and several different types of arrangements, curves, and poly-
lines. Our system leverages the open-source libraries NanoSVG
and simple-svg for SVG reading and writing, respectively. The use
of standard libraries ensures that our format is widely compatible
with other software such as Adobe Illustrator for design, or Oth-
erplan for CNC toolpath generation. This enables artists to easily
shift among their favorite tools without any added hassle of file con-
version.

Using the Tool Users primarily interact with our intuitive user in-
terface, which was implemented using the NanoGUI library. Our
application displays the two representations side by side, along with
some additional functionality specific to each.

In the art canvas on the left, our system displays the original bèzier
curves that were specified in the input file. We deliberately use this
representation as opposed to its polyline approximation because the
splines allow for easy, intuitive editing that conforms to the artist’s

Figure 8: Another UI example with more complicated input. Even
with large designs, the system is efficient enough to handle edit
propagation at interactive rates.

typical workflow. The art canvas provides the ability to indepen-
dently toggle displays for the curve endpoints and control points.
The former are displayed as solid-filled circles along the curve,
whereas the latter are visualized as tangent lines with open circles.
When one or both of these visualizations are displayed, the user can
interactively edit any of the points by clicking and dragging, as in
any other graphics software. Dragging a curve endpoint will also
update its associated control points, to maintain whatever tangent
continuity was previously specified. Motion of the control points is
independent, so only the control point(s) under the cursor will be
affected by any such edits.

Meanwhile, the fabrication canvas shows a polyline representation
of the closed fabrication regions, after they have been computed
using the algorithm outlined in Section 4.1. The updates to this
fabrication view are relayed in real time, so the user is always able
to visualize the impact of any art-view edits they may have made.
Once the user is happy with their final design, the fabrication canvas
provides an opportunity to export an SVG depicting the fabrication
representation shown in the canvas panel.

Nesting Though it would be perfectly valid to load the exported
file directly into a milling software such as Otherplan, this would
be nearly akin to passing in the ”art” representation directly. This is
due to the fact that our current implementation does not support au-
tomatic layout, or nesting. In this stage, the closed regions should
ideally be shuffled from their ”assembled” configuration into a lay-
out that is more suitable for fabrication. This layout must satisfy a
number of physical constraints, such as (a) fitting all pieces within
the material boundaries, (b) wasting as little material as possible,
and (c) maintaining enough space between pieces for the bit to pass
through. Presently, this layout optimization must be done by hand
in Illustrator or something similar. In the future, this is something
we would like to integrate into our system.

Fabrication Now, the file is ready for fabrication. The system
could be tuned to any number of prototyping technologies, includ-
ing CNC mills, laser cutters, or – with more drastic modifications –
3D printers. However, in our experiments, we focused on an imple-
mentation for the Othermill desktop milling machine. We generated
our tool paths by loading the nested SVG file into Otherplan, and
following the dialogs in order to properly set up the materials, tools,
and toolpaths.

Though we used a single inexpensive wood for the experiments pre-
sented throughout this paper, it would be possible to spread the de-
sign’s pieces out across multiple species to generate more interest-
ing designs, akin to those in Figure 2. This idea, and other similar

a) b)

d) c)

Figure 9: General design pipeline for transforming arbitrary vec-
tor illustrations into fabricable designs. We start with (a) artistic
splines that are semantically meaningful, but which fail to explicitly
represent the boundary of the closed region we wish to fabricate.
We then convert these splines to (b) explict boundaries of the closed
regions we wish to fabricate, with the boundaries slightly offset to
account for fabrication tolerances. Finally, we (c) shift the piece
into a final fabrication layout, then (d) test our final result. If the
design does not work (d), the user must return to (a) the original
representation to fix the issue, then complete the process again. It
often took many time-consuming iterations to reach a functional
design.

improvements, give way to a host of future directions that will be
discussed shortly. Before this discussion, we provide a closer look
at the results generated by our current implementation.

5 Comparison to Existing Technologies

Before designing our system, we explored several technologies and
approaches that are currently available to artists in this domain. We
found that clever use of tools like Adobe Illustrator, Otherplan, and
the Othermill enabled the outcome we were hoping for. However,
the process was tedious and non-intuitive: even simple cases (e.g.
puzzle pieces) required tens of iterations over the course of several
hours to arrive at a fabricable design. This experimental process
is outlined below, as it was critical for our understanding of the
problem statement, and the design of our technical approach as dis-
cussed in Section 4.

Much like our automated implementation, we begin the existing
technology pipeline with a set of artistic vectors that must be trans-
formed into closed, fabricable regions. As previously mentioned,
we compute this planar map using Adobe Illustrators Live Paint
tool. This process generates results similar to those of our system,
providing explicit boundaries around each closed face, which could
then be manually rearranged into a fabrication layout.

However, this direct approach neglects the fact that the boundaries
must be offset slightly in the inward direction, ”shrinking” the faces
to ensure that they fit together smoothly in the final construction.
The two pipelines differ most in the way they address this issue of
boundary offsetting. In our system, the boundary offsets are per-
formed after the planar map has been computed. This is an intu-
itive approach, that mimics the manual (i.e., professional artisan)
approach to intarsia: you first define the explicit boundaries of the

Figure 10: CNC milled intarsia, with pattern design via the existing
technology pipeline described in Section 5. Each pattern took sev-
eral iterations to obtain an acceptably small tolerance between the
pieces, while still ensuring that they would fit together. In this case,
the rightmost designs are preferable, as their tight fit mirrors the
aim of professional intarsia: consistent tolerances, with negative
space no thicker than a business card in between. We used cyclic
patterns for validation because they require high precision in order
for the pieces to align properly with one another. This verified that
the pieces were fitting together as expected, mitigating the chance
that we were propagating any non-negligible errors throughout the
design.

regions you would like to fabricate, then you alter them slightly in
order to ensure that they are perfectly aligned with the neighboring
piece(s).

After computing the Live Paint regions, the pipeline of existing
technologies fails to offer an intuitive way to complete this offset
operation. While it is possible to offset the boundaries at this point
in the process, it would either require clever application of exist-
ing procedures, or a considerable amount of manual manipulation.
Instead, we rearranged our processing steps to make use of a com-
mon artist’s hack. While still in the art view, we set the ”stroke
width” attribute of all vectors equal to 2δ, so that they were ex-
actly twice as wide as the offset we desired. Then, we applied the
outline stroke tool to the image, which generates explicit parame-
terizations for the profile of each vector’s stroke. At any point along
a visible spline, we can now imagine that there are three curves: (a)
the ”median” curve, which is the original vector parameterization
that runs through the center of the stroke; and (b) the two ”offset”
curves, which trace along the extent of the displayed stroke width,
forming a pair of ”railroad tracks” that are consistently some dis-
tance δ away from the median, and 2δ away from one another. We
then discard the original splines, and compute the Live Paint planar
mapping on the offset curves themselves.

Figures 10 and 12 offer several examples of pieces fabricated using
the existing technology pipeline described above.

In practice, the approaches taken by each of these pipelines gener-
ate comparable results. However, there are two notable advantages
of our method over the existing technologies approach. First, our
method offers a considerable speedup in the design process, as the
conversion from the art representation to the fabrication represen-
tation is instantaneous. Our formulation also explicitly embraces
fabrication constraints that go beyond the offset requirement, such
as the design’s eventual conversion to g-code polylines. At first
glance, it appears as if the existing technologies pipeline offers an

advantage over our implementation, because it appears to work with
the specified bèzier curves throughout the entire design process.
However, the implementation of each discrete step in this process
could contain any number of conversions between design param-
eterizations: rasterizing the stroke width, fitting ”offset” curves to
the stroke outlines, etc. The proprietary implementations within
Illustrator make it difficult to pinpoint exactly which of these ap-
proximations may be occurring. In any case, the bèziers of the fi-
nal design will have to be ported to polylines for fabrication. This
makes it likely that the manually constructed fabrication view has
been subjected to more approximations than the results from our
system.

There are also several subtle nuances between the underlying al-
gorithms in each pipeline. For example, stroke-width offsets in Il-
lustrator tend to blur sharp corners as the offset increases, whereas
our method preserves the sharpness of the intersection. We also
note the subtle fact that changing the width of a spline can alter
the perceived shape of that spline. This can result in the unexpected
exposure of artifacts that were hidden in the original design. For ex-
ample, consider a region in which there are several vertices near one
another, arranged in a zigzag pattern. Thickening the stroke around
this central path tends to hide or average out such high frequency
details, while thinning the stroke might expose high frequency de-
tails that were previously (intentionally) hidden within the extent of
the stroke width. Our approach avoids this issue in most situations.

Since our system relies exclusively on the underlying parameteriza-
tion of the splines rather arbitrary display settings like stroke-width,
it may also encourage users to think about the design in terms of the
median spline itself. This approach promotes a clean, precise ex-
pression of the design – rather than one that simply relies on visual
perception – as it reduces the artist’s freedom to hide undesirable
artifacts.

6 Results

While we managed to obtain satisfying results with existing tools,
we found that the process to be unnecessarily time consuming and
tedious. In general, it was difficult to assess the validity of any
particular design until the pieces had been fed through the entire
pipeline, then physically fabricated. Since the final fabrication rep-
resentation cannot be edited in a reasonable way, any required al-
terations must be made in the original art view, all the way at the
beginning of the pipeline again. Thus, after every iterative change,
the artist was forced to alter the stroke width, repeat the live paint
process, then move the new pieces into an optimized fab layout
once again. This makes the design process frustratingly inefficient,
as iterations are very slow, and there are several intermediate steps
that prevent the artist from seeing the impact of their changes in the
final representation.

The current implementation of our pipeline still suffers from several
of the bottlenecks described above, including manual fabrication
layout, and the inability to accurately assess the validity of a design
until it has been realized. However, our system was designed with
a thorough understanding of the problem and these potential exten-
sions in mind, so we believe that future iterations of this project will
be able to incorporate features that address some of these concerns
directly. Moreover, our system has already offered significant im-
provements in the design process by (1) recognizing and exploiting
the duality of the art and fabrication representations, (2) automat-
ing several tedious intermediate steps, and (3) creating an intuitive
tool that uses real-time feedback to drastically reduces the tedious
overhead of valid fabricable design.

These improvements have reduced the amount of time and energy
necessary to convert an artistic design into valid fabricable form.

With the existing technologies pipeline, it could take up to 20 min-
utes to realize even small changes to simple designs, such as the
puzzle. While the actions themselves were quite straightforward,
there was a lot of overhead involved in order to clean up the file
structures, and ensure that each step was computed in the proper
order. Our automated pipeline produces the same results in a mere
moment, while hiding many of the tedious details and displaying
only those results that were of use to the artist. This streamlined
approach compresses the iteration cycle dramatically, and empow-
ers the artist to explore a greater portion of the nearby design space.

7 Discussion

One of the most interesting pieces of this project was the initial ex-
ploration stage, because the domain of physical graphic design is
both expansive and relatively unexplored. We spent several weeks
simply defining this space, gathering inspiration from previous aca-
demic works, industry endeavors, and personal artistic creations.
At the end of this extensive analysis, we had familiarized ourselves
with a wide range of projects, including stencils, bas relief, devel-
opable surfaces, package design, chip carving, and various forms of
papercraft. For each of these domains, we tried to identify a set of
constraints that would need to be satisfied in order to realize a digi-
tal design in that particular fabricated form. All told, we identified
nearly 30 distinct constraints spanning four broad categories:

• Aesthetic - How well do we approximate the target design?
Is our design readable (scale vs. detail)?

• Material - Are there any minimum or maximum dimensions?
Should we consider any material properties such as grain
(wood) or layers (3D printing), whether for strength or aes-
thetics?

• Fabrication - How many degrees of freedom does the ma-
chine have? Can the actions be executed in any order?

• Feasibility - Is the final design assemblable? Do we need to
consider multi-piece alignment or structural stability?

As one might expect, we found a substantial amount of over-
lap among the constraints necessary for any individual problem.
Thus, we believe that it is both possible and desirable to identify
a fabrication-aware paradigm that goes beyond any single project
domain listed above, in order to address the more general class of
physical graphic design. We attempted to conceptualize our sys-
tem within this larger context, such that it might be a start toward
generalized physical graphic design. This goal is both interesting
and motivating, but it is well beyond the scope of any single paper.
Thus, we narrowed our interests to consider a single domain in or-
der to approach this goal from a more tractable angle. We chose
intarsia because it exhibited many of the most common constraints,
while also presenting several unique challenges and potential ex-
tensions in and of itself.

Initally, we designed a full pipeline for intarsia, which went from
the initial pattern creation all the way through to an optimized out-
put for either traditional scroll-saw creation or CNC milling. This
pipeline also envisioned an interactive, fabrication-aware editing
stage. This latter part of the pipeline – from editing to final out-
put – is where we chose to focus our efforts. This project was a
great exercise in problem exploration and scoping, as we were sur-
prised to find that even within this increasingly narrowing scope,
there were many potentially interesting directions left unexplored.

Part of the reason for this additional curbing was the fact that we en-
countered several challenges throughout the course of this project,
both in the form of one-time setbacks and persistent obstacles.
Small but impactful hurdles included issues like library compilation

and compatibility of the disparate units that we chose, as this ini-
tial setup proved to be much more time intensive than we originally
expected. Our library choices also required us to spend a decent
amount of time implementing wrappers and interfaces that we had
previously taken for granted, such as the ability to read, write, and
display SVG data, or interact with the vertices in a reasonable way.

One of the most challenging obstacles we faced was the ability to
understand, interpret, and correctly interface with the CGAL Ar-
rangement2 implementation. While this is widely understood to
be the most robust open-source solution for planar mapping, the
library is certainly not without its flaws. In particular, we found
that the documentation was somewhat lacking. It was plentiful, in
the sense that every class and function was documented, and sev-
eral high level descriptions, use cases, and examples were avail-
able. However, the function descriptions were often minimal or
non-existent, and the project structure was somewhat of a labyrinth,
requiring several deep dives through the documentation before truly
understanding what you were searching for. This made it difficult
to discern the underlying implementation of the code that we were
trying to leverage– including the data structures, the assumptions,
and the intent of various abstractions – so progress was often much
slower than anticipated. This will continue to pose an issue in future
iterations of this project, as we attempt to augment the functionality
for features like the ideal bi-directional editing approach discussed
in section 3. This effort will propel us even further from the sam-
ple use cases which – with careful scrutiny – have guided us to this
point.

The Arrangement2 library also posed its fair share of practical ob-
stacles, which required the conception and development of several
heuristics in order to ensure that we were getting the proper result.
For instance, the Arrangements2 class provides functionality to tra-
verse the counter-clockwise boundary of a given face, ensuring that
the segments are returned in sequential order. We assumed that the
segments would also be returned in the correct orientation, such
that the endpoint of the current segment would be the starting point
for the next. However, after several mysteriously failed results, we
realized that despite their being stored as directed half-edges with
explicit ”source” and ”target” members, this was not necessarily the
case. Since the orientation was crucial to our algorithms, we had to
systemically evaluate the pairs of points each time we traversed the
edges, flipping the points if necessary and accounting for all corner
cases that could occur at the beginning or end of a boundary cycle.

Logical discrepancies and misinterpretations of this sort were not
uncommon while working with this library, and they were often
much more challenging to debug. One of the most persistent issues
we encountered was our attempt to create planar maps directly from
the given artistic splines. We were able to parse these bèziers into
the appropriate format, and feed them through the planar mapping
code in order to arrive at what appeared to be a proper planar graph
of the illustration we had inserted (Figure 11). However, each time
we tried to write out the faces using the curve segments from the
original design, we ended up with designs that were very close to
what we expected, but always slightly off in one way or another. In
some cases, this resulted in properly closed but slightly overlapping
regions (Figure 11d), which is invalid because it requires multiple
pieces to occupy the same physical space. In other attempts, we
ended up with curve segments that had clearly over- or under-shot
their correct intersection values, leaving us with regions that were
decidedly not closed (Figure 11c). To the best of our knowledge,
these issues stemmed from numerical imprecision within the library
itself, despite the fact that we used the suggested numeric and al-
gebraic kernels in all of our underlying template implementations.
Despite several months’ worth of effort, these issues remain un-
solved. As previously mentioned, our current implementation cir-
cumvents the problem by converting all input curves to polylines

(a) (b)

(c) (d)

Figure 11: Documenting issues with direct bèzier planar mapping
using CGAL Arrangement2. The bèzier input (a) appears to gener-
ate a proper planar graph (b), but attempts to write out the closed
regions using the underlying curve segments gave undesirable re-
sults (c,d). Note that the pieces of (c) were shifted using Adobe
Illustrator in order to clearly display the errors in our output. The
pieces of (d) have been falsely colored to emphasize their closed-
region representation, which is correct aside from the green corner
protruding into its neighboring blue piece.

before computing the planar map. In addition to its merits as de-
scribed earlier in the paper, this decision to embrace polylines was
a breakthrough that enabled us to move forward with the project.

8 Limitations and Future Work

Although our system already contributes tangible gains over exist-
ing pipelines for fabricable intarsia design, the current implemen-
tation serves as a mere foundation for the possibilities yet to be
explored. Throughout the paper, we have suggested a number of
features, like bèzier flattening, that could be improved through op-
timized algorithms. There are also a number of places where we
might consider methods that differ entirely from our current imple-
mentation. One example of this would be the use of signed distance
fields in our offsetting algorithm in order to determine whether our
offsets have caused edges of the face to cross one another, resulting
in a non-simple closed region which is invalid for fabrication.

In future work, we would also like to address several small artifacts
that our algorithm currently produces. One such artifact stems from
the fact that CGAL’s Arrangement2 implementation does not allow
for a gap parameter, which currently requires the artist to artificially
extend lines beyond the desired intersection point to ensure that the
algorithm registers it properly. We have already implemented a san-
itization algorithm which detects and removes the unwanted tails
that extend into neighboring pieces due to this artificial extension.
However, at intersections of three or more vectors, this artificial
extension often enclosed a secondary region that was not present
in the original design. These artifacts manifest themselves as tiny
additional faces in the final fabrication design – three such enclo-
sures can be found in the elephant’s final fabrication view (as seen
in Figure 8). While these are trivial to remove in a post process, we
would like to allow the user to deal with these artifacts directly in
our system. If the user alters the art view after removing these un-
wanted faces, we will also need to consider the interesting question
of how to store and respect these fabrication edits, so that the faces
do not continue to appear in future computations of the fabrication
representation.

Figure 12: Documentation of our shaping extension in the existing
technologies pipeline. This could serve as an interesting future di-
rection, as it offers more design and visualization challenges, while
also producing a much richer final artifact as compared to the 2D
boundary representation only (bottom).

Beyond the features which we have already implemented, we would
like to implement a validity simulation that will localize any regions
of the design that are unrealizable with the fabrication mechanisms
(bit diameters) specified by the user. A path might be considered
unrealizable if it has high curvature regions or other openings that
are too narrow for the bit to pass through. These issues can be
localized to independent pieces of the design, or they can result
from a global layout problem in which two pieces are simply too
close to one another in the final fabrication layout. All of these
issues stem from relative sizing issues between the design and the
finite-width bit being used for fabrication, so a naive solution to
this problem is to continually scale up the design until the size ratio
allows for a permissible realization of the design. However, even
if the scale of the final piece is irrelevant (which is rarely true),
this method will eventually run into fundamental limits, such as
material exhaustion or a maximum build volume. Thus, it would
be preferable to address the issue on a more fundamental level with
a system that provided intuitive editing controls and synchronized
feedback that guided the user toward a valid fabricable design.

We could also imagine relaxing any number of the assumptions
made in this paper, such as our restriction to the 2-dimensional case,
in which we ignore any overall edge or surface shaping to focus ex-
clusively on the boundaries defining each piece. In the future, we
hope to extend the system to include 2.5D components like sur-
face shaping, which determines the height field imposed on each
individual piece. We started exploring the creation of these 2.5D
intarsia pieces through our existing technologies pipeline (12) by
including 3D modeling softwares such as Autodesk Maya and Au-
todesk Fusion 360. The process was relatively painful, as it required
roughly three weeks and four broken endmills to find a pipeline that
worked; ultimately, though, we found the results quite satisfying.
The additional shaping gives more depth to the final result, while
offering additional challenges and interesting questions for us to

reconcile. We might realize an extension like this by allowing the
user to impose a height field on each piece, using a process like
diffusion curves [Orzan et al. 2008] or any of the various processes
used to generate bas relief pieces [Kerber et al. 2012].

We then hope to tackle other parts of our original pipeline, building
out functionality to address things like 3D visualization, optimal
grain-aware nesting, initial pattern creation, and more complicated
design elements like layering. Interesting variations of problems
like nesting have been studied in previous works [Koo et al. 2016],
but our application places unique constraints on each of these ele-
ments so the idea transfer would still be very interesting to explore.
In the end, our system would ideally guide the user through the
entire design process, from an image input all the way through to
visualization and a final physical piece. This comprehensive tool
would further reduce the barrier to entry for intarsia design and re-
alization, which is currently only accessible to skilled artisans.

9 Conclusion

This project effectively conceptualizes and implements a novel
paradigm for the intuitive design of fabricable Intarsia. We conduct
an extensive and methodical exploration of the design space, from
both theoretical and practical perspectives. This inspired the dual
representation that we presented above, while allowing us to iden-
tify and evaluate a pipeline of existing technologies against which
we could compare our methods. Finally, we leverage our findings
in an interactive design tool that propagates user edits from one fun-
damental representation to the other, allowing users to immediately
see the impact of their edits in the fabrication domain. By recogniz-
ing, defining, and subsequently exploiting the dual representation
that is necessary for design and fabrication to coexist, our system
is able to make noticable improvements to the process of iterative
fabrication-aware design. This project has also laid the groundwork
for more extensive exploration, not only in the context of Intarsia,
but the more general class of physical graphic design.

Acknowledgements

This work was completed as an undergraduate senior thesis at Dart-
mouth College, though it began as an intern project at Adobe’s
Creative Technologies Lab in Seattle. This work was supported
by the Adobe Research Women-in-Technology Scholarship. We
would like to thank Adobe Research, for the generous scholarship
opportunity that enabled this collaboration, and for their support
and courtesy in allowing our group to continue the work following
the internship duration.

References

ASENTE, P., SCHUSTER, M., AND PETTIT, T. 2007. Dynamic
planar map illustration. In ACM SIGGRAPH 2007 Papers, ACM,
New York, NY, USA, SIGGRAPH ’07.

BÄCHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-it: Optimizing moment of inertia for
spinnable objects. ACM Trans. Graph. 33, 4 (July), 96:1–96:10.

BAUDELAIRE, P., AND GANGNET, M. 1989. Planar maps: An
interaction paradigm for graphic design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, CHI ’89, 313–318.

BERNSTEIN, G. L., AND LI, W. 2015. Lillicon: Using transient
widgets to create scale variations of icons. ACM Trans. Graph.
34, 4 (July), 144:1–144:11.

BRONSON, J., RHEINGANS, P., AND OLANO, M. 2008.
Semi-automatic stencil creation through error minimization.
In Proceedings of the 6th International Symposium on Non-
photorealistic Animation and Rendering, ACM, New York, NY,
USA, NPAR ’08, 31–37.

CANNY, J. 1986. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-8, 6 (Nov), 679–698.

FISCHER, K., 2000. Piecewise linear approximation of bézier
curves.

HAIN, T. F., AHMAD, A. L., RACHERLA, S. V. R., AND LAN-
GAN, D. D. 2005. Fast, precise flattening of cubic bézier path
and offset curves. In Computers & Graphics, Elsevier, 656 –
666.

IARUSSI, E., LI, W., AND BOUSSEAU, A. 2015. Wrapit:
Computer-assisted crafting of wire wrapped jewelry. ACM
Trans. Graph. 34, 6 (Oct.), 221:1–221:8.

JAIN, A., CHEN, C., THORMÄHLEN, T., METAXAS, D., AND
SEIDEL, H.-P. 2015. Multi-layer stencil creation from images.
Comput. Graph. 48, C (May), 11–22.

KERBER, J., WANG, M., CHANG, J., ZHANG, J. J., BELYAEV,
A., AND SEIDEL, H.-P. 2012. Computer assisted relief gen-
eration—a survey. Comput. Graph. Forum 31, 8 (Dec.),
2363–2377.

KOO, B., HERGEL, J., LEFEBVRE, S., AND MITRA, N. 2016.
Towards zero-waste furniture design. IEEE Transactions on Vi-
sualization and Computer Graphics PP, 99, 1–1.

LAU, C., SCHWARTZBURG, Y., SHAJI, A., SADEGHIPOOR, Z.,
AND SÜSSTRUNK, S. 2014. Creating personalized jigsaw puz-
zles. In Proceedings of the Workshop on Non-Photorealistic An-
imation and Rendering, ACM, New York, NY, USA, NPAR ’14,
31–39.

LIU, S., JACOBSON, A., AND GINGOLD, Y. 2014. Skinning cu-
bic bézier splines and catmull-clark subdivision surfaces. ACM
Trans. Graph. 33, 6 (Nov.), 190:1–190:9.

MCCRAE, J., UMETANI, N., AND SINGH, K. 2014. Flatfitfab:
Interactive modeling with planar sections. In Proceedings of the
27th Annual ACM Symposium on User Interface Software and
Technology, ACM, New York, NY, USA, UIST ’14, 13–22.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: A
vector representation for smooth-shaded images. In ACM SIG-
GRAPH 2008 Papers, ACM, New York, NY, USA, SIGGRAPH
’08, 92:1–92:8.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make it stand: Balancing shapes for 3d
fabrication. ACM Trans. Graph. 32, 4 (July), 81:1–81:10.

SCHWARTZBURG, Y., AND PAULY, M. 2013. Fabrication-aware
design with intersecting planar pieces. Computer Graphics Fo-
rum 32, 2pt3, 317–326.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: Improving structural strength of 3d printable
objects. ACM Trans. Graph. 31, 4 (July), 48:1–48:11.

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRIN-
SPUN, E. 2011. Sensitive couture for interactive garment edit-
ing and modeling. ACM Transactions on Graphics (SIGGRAPH
2011) 30, 4.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4 (July), 86:1–86:11.

UMETANI, N., KOYAMA, Y., SCHMIDT, R., AND IGARASHI, T.
2014. Pteromys: Interactive design and optimization of free-
formed free-flight model airplanes. ACM Trans. Graph. 33, 4
(July), 65:1–65:10.

WEIN, R., BERBERICH, E., FOGEL, E., HALPERIN, D., HEM-
MER, M., SALZMAN, O., AND ZUKERMAN, B. 2017. 2D
arrangements. In CGAL User and Reference Manual, 4.9.1 ed.
CGAL Editorial Board.

WHITING, E., OUF, N., MAKATURA, L., MOUSAS, C., SHU, Z.,
AND KAVAN, L. 2017. Environment-scale fabrication: Repli-
cating outdoor climbing experiences. In Proc. 2017 CHI Con-
ference on Human Factors in Computing Systems, ACM, 1794–
1804.

YAO, J., KAUFMAN, D. M., GINGOLD, Y., AND AGRAWALA,
M. 2017. Interactive design and stability analysis of decorative
joinery for furniture. ACM Trans. Graph. 36, 2 (Mar.), 20:1–
20:16.

YUMER, M. E., CHAUDHURI, S., HODGINS, J. K., AND KARA,
L. B. 2015. Semantic shape editing using deformation handles.
ACM Trans. Graph. 34, 4 (July), 86:1–86:12.

